This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323718 #31 May 14 2021 08:21:18 %S A323718 1,1,1,1,1,1,1,2,1,1,1,3,3,1,1,1,5,6,4,1,1,1,7,15,10,5,1,1,1,11,28,34, %T A323718 15,6,1,1,1,15,66,80,65,21,7,1,1,1,22,122,254,185,111,28,8,1,1,1,30, %U A323718 266,604,739,371,175,36,9,1,1,1,42,503,1785,2163,1785,672,260,45,10,1,1 %N A323718 Array read by antidiagonals upwards where A(n,k) is the number of k-times partitions of n. %C A323718 A k-times partition of n for k > 1 is a sequence of (k-1)-times partitions, one of each part in an integer partition of n. A 1-times partition of n is just an integer partition of n, and the only 0-times partition of n is the number n itself. %H A323718 Alois P. Heinz, <a href="/A323718/b323718.txt">Rows n = 0..140, flattened</a> %F A323718 Column k is the formal power product transform of column k-1, where the formal power product transform of a sequence q with offset 1 is the sequence whose ordinary generating function is Product_{n >= 1} 1/(1 - q(n) * x^n). %F A323718 A(n,k) = Sum_{i=0..k} binomial(k,i) * A327639(n,i). - _Alois P. Heinz_, Sep 20 2019 %e A323718 Array begins: %e A323718 k=0: k=1: k=2: k=3: k=4: k=5: %e A323718 n=0: 1 1 1 1 1 1 %e A323718 n=1: 1 1 1 1 1 1 %e A323718 n=2: 1 2 3 4 5 6 %e A323718 n=3: 1 3 6 10 15 21 %e A323718 n=4: 1 5 15 34 65 111 %e A323718 n=5: 1 7 28 80 185 371 %e A323718 n=6: 1 11 66 254 739 1785 %e A323718 n=7: 1 15 122 604 2163 6223 %e A323718 n=8: 1 22 266 1785 8120 28413 %e A323718 n=9: 1 30 503 4370 24446 101534 %e A323718 The A(4,2) = 15 twice-partitions: %e A323718 (4) (31) (22) (211) (1111) %e A323718 (3)(1) (2)(2) (11)(2) (11)(11) %e A323718 (2)(11) (111)(1) %e A323718 (21)(1) (11)(1)(1) %e A323718 (2)(1)(1) (1)(1)(1)(1) %p A323718 b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1, %p A323718 1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k)) %p A323718 end: %p A323718 A:= (n, k)-> b(n$2, k): %p A323718 seq(seq(A(d-k, k), k=0..d), d=0..14); # _Alois P. Heinz_, Jan 25 2019 %t A323718 ptnlev[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Tuples[ptnlev[#,k-1]&/@ptn],{ptn,IntegerPartitions[n]}]]; %t A323718 Table[Length[ptnlev[sum-k,k]],{sum,0,12},{k,0,sum}] %t A323718 (* Second program: *) %t A323718 b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0 || i == 1, 1, %t A323718 b[n, i - 1, k] + b[i, i, k - 1]*b[n - i, Min[n - i, i], k]]; %t A323718 A[n_, k_] := b[n, n, k]; %t A323718 Table[Table[A[d - k, k], {k, 0, d}], {d, 0, 14}] // Flatten (* _Jean-François Alcover_, May 13 2021, after _Alois P. Heinz_ *) %Y A323718 Columns: A000012 (k=0), A000041 (k=1), A063834 (k=2), A301595 (k=3). %Y A323718 Rows: A000027 (n=2), A000217 (n=3), A006003 (n=4). %Y A323718 Main diagonal gives A306187. %Y A323718 Cf. A001970, A055884, A096751, A144150, A196545, A281113, A289501, A290353, A300383, A323719, A327618, A327639. %K A323718 nonn,tabl %O A323718 0,8 %A A323718 _Gus Wiseman_, Jan 25 2019