A323719 Array read by antidiagonals upwards where A(n, k) is the number of orderless factorizations of n with k - 1 levels of parentheses.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 3, 1, 4, 1, 6, 1, 1, 1, 1, 2, 6, 1, 5, 1, 7, 1, 1, 1, 1, 2, 3, 10, 1, 6, 1, 8, 1, 1, 1, 1, 1, 3, 4, 15, 1, 7, 1, 9, 1, 1, 1, 1, 4, 1, 4, 5, 21, 1, 8, 1, 10, 1, 1, 1
Offset: 1
Examples
Array begins: k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 n=1: 1 1 1 1 1 1 1 1 1 1 1 1 1 n=2: 1 1 1 1 1 1 1 1 1 1 1 1 1 n=3: 1 1 1 1 1 1 1 1 1 1 1 1 1 n=4: 1 2 3 4 5 6 7 8 9 10 11 12 13 n=5: 1 1 1 1 1 1 1 1 1 1 1 1 1 n=6: 1 2 3 4 5 6 7 8 9 10 11 12 13 n=7: 1 1 1 1 1 1 1 1 1 1 1 1 1 n=8: 1 3 6 10 15 21 28 36 45 55 66 78 91 n=9: 1 2 3 4 5 6 7 8 9 10 11 12 13 n=10: 1 2 3 4 5 6 7 8 9 10 11 12 13 n=11: 1 1 1 1 1 1 1 1 1 1 1 1 1 n=12: 1 4 9 16 25 36 49 64 81 100 121 144 169 n=13: 1 1 1 1 1 1 1 1 1 1 1 1 1 n=14: 1 2 3 4 5 6 7 8 9 10 11 12 13 n=15: 1 2 3 4 5 6 7 8 9 10 11 12 13 n=16: 1 5 14 30 55 91 140 204 285 385 506 650 819 n=17: 1 1 1 1 1 1 1 1 1 1 1 1 1 n=18: 1 4 9 16 25 36 49 64 81 100 121 144 169 The A(12,3) = 16 orderless factorizations of 12 with 2 levels of parentheses: ((2*2*3)) ((2*6)) ((3*4)) ((12)) ((2)*(2*3)) ((2)*(6)) ((3)*(4)) ((3)*(2*2)) ((2))*((6)) ((3))*((4)) ((2))*((2*3)) ((2)*(2)*(3)) ((3))*((2*2)) ((2))*((2)*(3)) ((3))*((2)*(2)) ((2))*((2))*((3))
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; lev[n_,k_]:=If[k==0,{n},Join@@Table[Union[Sort/@Tuples[lev[#,k-1]&/@fac]],{fac,facs[n]}]]; Table[Length[lev[sum-k,k]],{sum,12},{k,0,sum-1}]
Comments