cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323719 Array read by antidiagonals upwards where A(n, k) is the number of orderless factorizations of n with k - 1 levels of parentheses.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 3, 1, 4, 1, 6, 1, 1, 1, 1, 2, 6, 1, 5, 1, 7, 1, 1, 1, 1, 2, 3, 10, 1, 6, 1, 8, 1, 1, 1, 1, 1, 3, 4, 15, 1, 7, 1, 9, 1, 1, 1, 1, 4, 1, 4, 5, 21, 1, 8, 1, 10, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2019

Keywords

Comments

An orderless factorization of n with k > 1 levels of parentheses is any multiset partition of an orderless factorization of n with k - 1 levels of parentheses. If k = 1 it is just an orderless factorization of n into factors > 1.

Examples

			Array begins:
       k=0  k=1  k=2  k=3  k=4  k=5  k=6  k=7  k=8  k=9  k=10 k=11 k=12
   n=1: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=2: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=3: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=4: 1    2    3    4    5    6    7    8    9   10   11   12   13
   n=5: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=6: 1    2    3    4    5    6    7    8    9   10   11   12   13
   n=7: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=8: 1    3    6   10   15   21   28   36   45   55   66   78   91
   n=9: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=10: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=11: 1    1    1    1    1    1    1    1    1    1    1    1    1
  n=12: 1    4    9   16   25   36   49   64   81  100  121  144  169
  n=13: 1    1    1    1    1    1    1    1    1    1    1    1    1
  n=14: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=15: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=16: 1    5   14   30   55   91  140  204  285  385  506  650  819
  n=17: 1    1    1    1    1    1    1    1    1    1    1    1    1
  n=18: 1    4    9   16   25   36   49   64   81  100  121  144  169
The A(12,3) = 16 orderless factorizations of 12 with 2 levels of parentheses:
  ((2*2*3))          ((2*6))      ((3*4))      ((12))
  ((2)*(2*3))        ((2)*(6))    ((3)*(4))
  ((3)*(2*2))        ((2))*((6))  ((3))*((4))
  ((2))*((2*3))
  ((2)*(2)*(3))
  ((3))*((2*2))
  ((2))*((2)*(3))
  ((3))*((2)*(2))
  ((2))*((2))*((3))
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    lev[n_,k_]:=If[k==0,{n},Join@@Table[Union[Sort/@Tuples[lev[#,k-1]&/@fac]],{fac,facs[n]}]];
    Table[Length[lev[sum-k,k]],{sum,12},{k,0,sum-1}]