This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323730 #16 Jan 27 2019 08:46:47 %S A323730 1,1,2,1,3,1,28,40,1,5,9,45,1,1,7,1,225,1,153,1,640,1,11,441,2541, %T A323730 4851,1,6348,1,13,25,325,1,19474560,1,1,976,1,17,1089,9537,18513,1, %U A323730 1225,1,19,1,1521,70840000,107747640000,1,81,1,1,23,1,343000,3763008,245790720 %N A323730 Table read by rows: row n lists every number j whose n-th power has exactly j divisors. %C A323730 Row n lists every j such that tau(j^n) = j. %C A323730 Since tau(1^n) = tau(1) = 1 for all n, every row of the table includes 1 as a term. %C A323730 Each prime p appears as a term in row p-1 since, for n=p-1, tau(p^n) = tau(p^(p-1)) = p. %H A323730 Jon E. Schoenfield, <a href="/A323730/b323730.txt">Table of n, a(n) for n = 0..282</a> (all terms of rows 0..100) %H A323730 Jon E. Schoenfield, <a href="/A323730/a323730.txt">Rows 0..100 of the table</a> %H A323730 Jon E. Schoenfield, <a href="/A323730/a323730_2.txt">Magma program for computing rows 0..23 of the table</a> %F A323730 A073049(n) = T(n,2) if row n contains more than 1 term, 0 otherwise. %F A323730 A323731(n) is the number of terms in row n. %F A323730 A323732 lists the numbers n such that row n contains only the single term 1. %F A323730 A323733 lists the numbers n such that row n contains more than one term; i.e., A323733 is the complement of A323732. %F A323730 A323734(n) = T(n, A323731(n)) is the largest term in row n. %e A323730 Row n=3 includes 28 as a term because tau(28^3) = tau((2^2 * 7)^3) = tau(2^6 * 7^3) = (6+1)*(3+1) = 7*4 = 28. %e A323730 Row n=3 includes 40 as a term because tau(40^3) = tau((2^3 * 5)^3) = tau(2^9 * 5^3) = (9+1)*(3+1) = 10*4 = 40. %e A323730 Row n=5 includes no terms other than 1 because there exists no number j > 1 such that tau(j^5) = j. %e A323730 Row n=23 includes 245790720 as a term because tau(245790720^23) = tau((2^11 * 3^3 * 5 * 7 * 127)^23) = tau(2^253 * 3^69 * 5^23 * 7^23 * 127^23) = (253+1)*(69+1)(23+1)*(23+1)*(23+1) = 254*70*24^3 = 245790720. %e A323730 Table begins as follows: %e A323730 n | row n %e A323730 ---+--------------------------------- %e A323730 0 | 1; %e A323730 1 | 1, 2; %e A323730 2 | 1, 3; %e A323730 3 | 1, 28, 40; %e A323730 4 | 1, 5, 9, 45; %e A323730 5 | 1; %e A323730 6 | 1, 7; %e A323730 7 | 1, 225; %e A323730 8 | 1, 153; %e A323730 9 | 1, 640; %e A323730 10 | 1, 11, 441, 2541, 4851; %e A323730 11 | 1, 6348; %e A323730 12 | 1, 13, 25, 325; %e A323730 13 | 1, 19474560; %e A323730 14 | 1; %e A323730 15 | 1, 976; %e A323730 16 | 1, 17, 1089, 9537, 18513; %e A323730 17 | 1, 1225; %e A323730 18 | 1, 19; %e A323730 19 | 1, 1521, 70840000, 107747640000; %e A323730 20 | 1, 81; %e A323730 21 | 1; %e A323730 22 | 1, 23; %e A323730 23 | 1, 343000, 3763008, 245790720; %Y A323730 Cf. A073049 (Least m > 1 such that m^n has m divisors, or 0 if no such m exists). %Y A323730 Cf. A000005, A323731, A323732, A323733, A323734. %K A323730 nonn,tabf %O A323730 0,3 %A A323730 _Jon E. Schoenfield_, Jan 25 2019