This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323741 #69 Feb 03 2022 16:34:26 %S A323741 2,2,2,2,8,2,2,6,2,2,6,6,2,2,8,2,2,2,10,12,2,8,2,2,8,6,2,20,12,2,2,6, %T A323741 6,2,2,6,2,2,12,8,6,6,8,2,8,2,12,6,10,8,2,22,2,14,20,6,6,2,2,2,8,6,2, %U A323741 8,2,6,2,12,2,14,6,2,8,8,14,10,2,18,20,2,8,14,6,2,10,2,32,2,12,12,2,8,6,44,2,6,14,6,20,14 %N A323741 a(n) = m-p where m = (2n+1)^2 and p is the largest prime < m. %C A323741 a(n) cannot be a square: suppose a(n) = k^2; then p=m-a(n) could be factored as (2n+k-1)*(2n-k-1); hence it would not be a prime. %C A323741 Legendre's conjecture implies a(n) <= 4*n. Oppermann's conjecture implies a(n) <= 2*n. - _Robert Israel_, Sep 04 2019 %C A323741 All terms are even. - _Alois P. Heinz_, Sep 04 2019 %H A323741 Harvey P. Dale, <a href="/A323741/b323741.txt">Table of n, a(n) for n = 1..1000</a> %F A323741 a(n) = A049711(A016754(n)). %e A323741 When n=4, m=81, p=79, so a(4) = 81-79 = 2. %p A323741 seq((2*n+1)^2-prevprime((2*n+1)^2),n=1..100); # _Robert Israel_, Sep 04 2019 %t A323741 mp[n_]:=Module[{m=(2n+1)^2},m-NextPrime[m,-1]]; Array[mp, 100] (* _Harvey P. Dale_, Feb 03 2022 *) %o A323741 (VBA/Excel) %o A323741 Sub A323741() %o A323741 For n = 1 To 100 %o A323741 Cells(n, 1) = (2 * n + 1) ^ 2 %o A323741 k = Cells(n, 1) - 2 %o A323741 k1 = (2 * n - 1) ^ 2 + 2 %o A323741 For p = k To k1 Step -2 %o A323741 IsPrime = True %o A323741 For i = 2 To Int(Sqr(p)) %o A323741 If p mod i = 0 Then %o A323741 IsPrime = False %o A323741 Exit For %o A323741 End If %o A323741 Next i %o A323741 If IsPrime Then %o A323741 Cells(n, 2) = p %o A323741 Cells(n, 3) = Cells(n, 1) - Cells(n, 2) %o A323741 Exit For %o A323741 End If %o A323741 Next p %o A323741 Next n %o A323741 End Sub %o A323741 (PARI) a(n) = (2*n+1)^2 - precprime((2*n+1)^2 - 1); \\ _Michel Marcus_, Sep 05 2019 %Y A323741 Cf. A016754, A049711, A088572, A089166, A151799. %K A323741 nonn %O A323741 1,1 %A A323741 _Ali Sada_, Sep 03 2019