cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323751 a(n) = Product_{k=0..n} (k^n + (n-k)^n).

This page as a plain text file.
%I A323751 #20 Sep 08 2022 08:46:23
%S A323751 2,1,32,59049,14101250048,775913238525390625,
%T A323751 13410804447068120796679372800,
%U A323751 112244673425189306235795780017831813874289,545831702006800417886454373052629612732034857946832699392
%N A323751 a(n) = Product_{k=0..n} (k^n + (n-k)^n).
%H A323751 Seiichi Manyama, <a href="/A323751/b323751.txt">Table of n, a(n) for n = 0..27</a>
%F A323751 a(n) = n^n * A323588(n). - _Vaclav Kotesovec_, Feb 08 2019
%t A323751 Table[Product[k^n+(n-k)^n, {k,0,n}], {n,0,10}] (* _G. C. Greubel_, Feb 08 2019 *)
%o A323751 (PARI) {a(n) = prod(k=0, n, k^n+(n-k)^n)}
%o A323751 (Magma) [(&*[k^n +(n-k)^n: k in [0..n]]): n in [0..10]]; // _G. C. Greubel_, Feb 08 2019
%o A323751 (Sage) [product(k^n +(n-k)^n for k in (0..n)) for n in (0..10)] # _G. C. Greubel_, Feb 08 2019
%Y A323751 Cf. A323540, A323541, A323542, A323543, A323544, A323545, A323546.
%Y A323751 Cf. A323575, A323588.
%K A323751 nonn
%O A323751 0,1
%A A323751 _Seiichi Manyama_, Jan 26 2019