This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323752 #10 Jan 06 2025 22:13:15 %S A323752 1,6,28,40,240,544,832,1152,2816,50176,118784,131584,409600,1050624, %T A323752 1056768,1081344,2031616,8519680,118489088,201588736,352321536, %U A323752 6446645248,15300820992,25836912640,104152956928,150323855360,1099545182208,3315714752512,4398583382016 %N A323752 Fixed points of A323710. %C A323752 If f(n) denotes the binary tree representation of n defined in A323710, then this sequence lists the n such that f(n) is symmetrical. %H A323752 Luc Rousseau, <a href="/A323752/b323752.txt">Table of n, a(n) for n = 1..200</a> %H A323752 Luc Rousseau, <a href="/A323752/a323752.pl.txt">A program to compute this sequence (SWI-Prolog)</a> %e A323752 The recursive decomposition of 50176 with formula "parent = (2^left)*(2*right+1)" gives the following binary tree representation: %e A323752 o %e A323752 / \ %e A323752 / \ %e A323752 / \ %e A323752 o o %e A323752 / \ / \ %e A323752 o o o o %e A323752 / \ %e A323752 o o %e A323752 This tree is symmetrical, so 50176 is in the sequence. %o A323752 (SWI-Prolog) % See Rousseau link. %Y A323752 Cf. A323710. %K A323752 nonn %O A323752 1,2 %A A323752 _Luc Rousseau_, Jan 26 2019