cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323753 Lesser member of primitive exponential amicable pairs.

Original entry on oeis.org

90972, 937692, 4548600, 44030448, 46884600, 453842928, 712931184, 906494400, 20907057600, 34793179200, 47646797328, 53469838800, 240707724300
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2019

Keywords

Comments

Exponential amicable pair (m,n) is primitive if there is no prime number that is a unitary divisor of both m and n. All the other amicable pairs can be generated from primitive pairs by multiplying them with a squarefree integer coprime to each of the members of the pair. Hagis found the first 6 terms in 1988. Pedersen found the next 7 terms in 1999.
a(14) <= 588330137304.
The larger counterparts are in A323754.

Examples

			(90972 = 2^2*3^2*7*19^2, 100548 = 2^2*3^3*7^2*19) are a primitive pair since they are an exponential amicable pair (A126165, A126166) and they do not have a common prime divisor with multiplicity 1 in both.
(454860, 502740) = 5 * (90972, 100548) are not a primitive pair since 5 divides both of them only once.
		

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n]; pf[n_] := Denominator[n/rad[n]^2]; esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; es[n_] := esigma[n] - n; s = {}; Do[m = es[n]; If[m > n && es[m] == n && CoprimeQ[pf[n], pf[m]], AppendTo[s, n]], {n, 1, 10^7}]; s (* after Jean-François Alcover at A055231 and A051377 *)