cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323755 Decimal expansion of a constant related to the asymptotics of A203475.

This page as a plain text file.
%I A323755 #9 Jan 26 2019 16:40:29
%S A323755 2,7,4,5,2,8,3,5,0,3,3,3,5,5,2,9,0,3,8,0,0,4,0,8,9,9,3,4,8,2,5,0,7,4,
%T A323755 2,8,1,4,2,3,8,3,7,8,3,7,7,3,1,9,0,4,5,1,1,8,1,0,7,2,7,2,3,7,4,2,6,9,
%U A323755 1,6,7,8,1,0,5,7,6,2,7,4,0,6,2,0,0,1,6,5,7,0,3,2,1,2,1,9,6,1,2,5,7,4,4,5,2,8
%N A323755 Decimal expansion of a constant related to the asymptotics of A203475.
%H A323755 Vaclav Kotesovec, <a href="/A323755/b323755.txt">Table of n, a(n) for n = 0..296</a>
%F A323755 Equals limit_{n->infinity} A203475(n) / (2^(n^2/2) * exp(Pi*n*(n+1)/4 - 3*n^2/2 + n) * n^(n*(n-1) - 3/4)).
%F A323755 Equals sqrt(Gamma(1/4)) * exp(Pi/24) / (2*Pi)^(9/8).
%e A323755 0.274528350333552903800408993482507428142383783773190451181072723742691...
%t A323755 RealDigits[Sqrt[Gamma[1/4]] * E^(Pi/24) / (2^(9/8) * Pi^(9/8)), 10, 120][[1]]
%Y A323755 Cf. A068466, A203475.
%K A323755 nonn,cons
%O A323755 0,1
%A A323755 _Vaclav Kotesovec_, Jan 26 2019