cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323764 Dirichlet self-convolution of the integer partition numbers A000041.

This page as a plain text file.
%I A323764 #11 Jan 28 2019 08:06:38
%S A323764 1,1,4,6,14,14,34,30,64,69,112,112,228,202,330,394,575,594,956,980,
%T A323764 1492,1674,2228,2510,3700,3965,5276,6200,8126,9130,12318,13684,17842,
%U A323764 20622,25808,29976,38377,43274,53990,62976,77912,89166,110656,126522,154918,179744
%N A323764 Dirichlet self-convolution of the integer partition numbers A000041.
%C A323764 Also the number of multiset partitions of constant multiset partitions of integer partitions of n.
%H A323764 Vaclav Kotesovec, <a href="/A323764/b323764.txt">Table of n, a(n) for n = 0..10000</a>
%F A323764 a(n) ~ exp(Pi*sqrt(2*n/3)) / (2*n*sqrt(3)). - _Vaclav Kotesovec_, Jan 28 2019
%e A323764 The a(4) = 14 multiset partitions of constant multiset partitions:
%e A323764   ((1111))              ((22))      ((4))  ((31))  ((211))
%e A323764   ((11)(11))            ((2)(2))
%e A323764   ((11))((11))          ((2))((2))
%e A323764   ((1)(1)(1)(1))
%e A323764   ((1))((1)(1)(1))
%e A323764   ((1)(1))((1)(1))
%e A323764   ((1))((1))((1)(1))
%e A323764   ((1))((1))((1))((1))
%t A323764 Join[{1},Table[Sum[PartitionsP[d]*PartitionsP[n/d],{d,Divisors[n]}],{n,1,100}]]
%Y A323764 Cf. A000041, A000837, A001970, A002033, A003238, A034729, A047968, A279787, A305551, A306017, A319056, A323774.
%K A323764 nonn
%O A323764 0,3
%A A323764 _Gus Wiseman_, Jan 27 2019