cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323765 Dirichlet convolution of the integer partition numbers A000041 with the strict partition numbers A000009.

This page as a plain text file.
%I A323765 #9 Jan 28 2019 08:07:10
%S A323765 1,1,3,5,9,10,22,20,37,44,65,68,127,119,182,226,307,335,511,544,782,
%T A323765 913,1171,1359,1908,2121,2738,3286,4174,4821,6305,7182,9108,10739,
%U A323765 13195,15548,19465,22397,27477,32423,39448,45843,55995,64871,78343,91761,109325
%N A323765 Dirichlet convolution of the integer partition numbers A000041 with the strict partition numbers A000009.
%C A323765 Also the number of strict multiset partitions of constant multiset partitions of integer partitions of n.
%H A323765 Vaclav Kotesovec, <a href="/A323765/b323765.txt">Table of n, a(n) for n = 0..10000</a>
%F A323765 a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)). - _Vaclav Kotesovec_, Jan 28 2019
%e A323765 The a(1) = 1 through a(5) = 10 strict multiset partitions of constant multiset partitions of integer partitions:
%e A323765   ((1))  ((2))     ((3))          ((4))             ((5))
%e A323765          ((11))    ((21))         ((31))            ((41))
%e A323765          ((1)(1))  ((111))        ((22))            ((32))
%e A323765                    ((1)(1)(1))    ((211))           ((311))
%e A323765                    ((1))((1)(1))  ((1111))          ((221))
%e A323765                                   ((2)(2))          ((2111))
%e A323765                                   ((11)(11))        ((11111))
%e A323765                                   ((1)(1)(1)(1))    ((1)(1)(1)(1)(1))
%e A323765                                   ((1))((1)(1)(1))  ((1))((1)(1)(1)(1))
%e A323765                                                     ((1)(1))((1)(1)(1))
%t A323765 Join[{1}, Table[Sum[PartitionsQ[d]*PartitionsP[n/d],{d,Divisors[n]}],{n,1,100}]]
%Y A323765 Cf. A000009, A000041, A001970, A034729, A047968, A050343, A316980, A319066, A323764, A323766, A323774.
%K A323765 nonn
%O A323765 0,3
%A A323765 _Gus Wiseman_, Jan 27 2019