This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323765 #9 Jan 28 2019 08:07:10 %S A323765 1,1,3,5,9,10,22,20,37,44,65,68,127,119,182,226,307,335,511,544,782, %T A323765 913,1171,1359,1908,2121,2738,3286,4174,4821,6305,7182,9108,10739, %U A323765 13195,15548,19465,22397,27477,32423,39448,45843,55995,64871,78343,91761,109325 %N A323765 Dirichlet convolution of the integer partition numbers A000041 with the strict partition numbers A000009. %C A323765 Also the number of strict multiset partitions of constant multiset partitions of integer partitions of n. %H A323765 Vaclav Kotesovec, <a href="/A323765/b323765.txt">Table of n, a(n) for n = 0..10000</a> %F A323765 a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)). - _Vaclav Kotesovec_, Jan 28 2019 %e A323765 The a(1) = 1 through a(5) = 10 strict multiset partitions of constant multiset partitions of integer partitions: %e A323765 ((1)) ((2)) ((3)) ((4)) ((5)) %e A323765 ((11)) ((21)) ((31)) ((41)) %e A323765 ((1)(1)) ((111)) ((22)) ((32)) %e A323765 ((1)(1)(1)) ((211)) ((311)) %e A323765 ((1))((1)(1)) ((1111)) ((221)) %e A323765 ((2)(2)) ((2111)) %e A323765 ((11)(11)) ((11111)) %e A323765 ((1)(1)(1)(1)) ((1)(1)(1)(1)(1)) %e A323765 ((1))((1)(1)(1)) ((1))((1)(1)(1)(1)) %e A323765 ((1)(1))((1)(1)(1)) %t A323765 Join[{1}, Table[Sum[PartitionsQ[d]*PartitionsP[n/d],{d,Divisors[n]}],{n,1,100}]] %Y A323765 Cf. A000009, A000041, A001970, A034729, A047968, A050343, A316980, A319066, A323764, A323766, A323774. %K A323765 nonn %O A323765 0,3 %A A323765 _Gus Wiseman_, Jan 27 2019