cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323766 Dirichlet convolution of the integer partition numbers A000041 with the number of divisors function A000005.

This page as a plain text file.
%I A323766 #13 Jan 28 2019 07:37:49
%S A323766 1,1,4,5,12,9,25,17,42,39,64,58,132,103,173,200,303,299,491,492,756,
%T A323766 832,1122,1257,1858,1975,2646,3083,4057,4567,6118,6844,8913,10265,
%U A323766 12912,14931,19089,21639,27003,31397,38830,44585,55138,63263,77371,89585,108076
%N A323766 Dirichlet convolution of the integer partition numbers A000041 with the number of divisors function A000005.
%C A323766 Also the number of constant multiset partitions of constant multiset partitions of integer partitions of n.
%H A323766 Vaclav Kotesovec, <a href="/A323766/b323766.txt">Table of n, a(n) for n = 0..10000</a>
%F A323766 a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)). - _Vaclav Kotesovec_, Jan 28 2019
%e A323766 The a(6) = 25 constant multiset partitions of constant multiset partitions of integer partitions of 6:
%e A323766   ((6))
%e A323766   ((52))
%e A323766   ((42))
%e A323766   ((33))
%e A323766   ((3)(3))
%e A323766   ((3))((3))
%e A323766   ((411))
%e A323766   ((321))
%e A323766   ((222))
%e A323766   ((2)(2)(2))
%e A323766   ((2))((2))((2))
%e A323766   ((3111))
%e A323766   ((2211))
%e A323766   ((21)(21))
%e A323766   ((21))((21))
%e A323766   ((21111))
%e A323766   ((111111))
%e A323766   ((111)(111))
%e A323766   ((11)(11)(11))
%e A323766   ((111))((111))
%e A323766   ((11))((11))((11))
%e A323766   ((1)(1)(1)(1)(1)(1))
%e A323766   ((1)(1)(1))((1)(1)(1))
%e A323766   ((1)(1))((1)(1))((1)(1))
%e A323766   ((1))((1))((1))((1))((1))((1))
%t A323766 Table[If[n==0,1,Sum[PartitionsP[d]*DivisorSigma[0,n/d],{d,Divisors[n]}]],{n,0,30}]
%o A323766 (PARI) a(n) = if (n==0, 1, sumdiv(n, d, numbpart(d)*numdiv(n/d))); \\ _Michel Marcus_, Jan 28 2019
%Y A323766 Cf. A000005, A000041, A000837, A001970, A034729, A047968, A306017, A319066, A323764, A323765, A323774.
%K A323766 nonn
%O A323766 0,3
%A A323766 _Gus Wiseman_, Jan 27 2019