This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323766 #13 Jan 28 2019 07:37:49 %S A323766 1,1,4,5,12,9,25,17,42,39,64,58,132,103,173,200,303,299,491,492,756, %T A323766 832,1122,1257,1858,1975,2646,3083,4057,4567,6118,6844,8913,10265, %U A323766 12912,14931,19089,21639,27003,31397,38830,44585,55138,63263,77371,89585,108076 %N A323766 Dirichlet convolution of the integer partition numbers A000041 with the number of divisors function A000005. %C A323766 Also the number of constant multiset partitions of constant multiset partitions of integer partitions of n. %H A323766 Vaclav Kotesovec, <a href="/A323766/b323766.txt">Table of n, a(n) for n = 0..10000</a> %F A323766 a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)). - _Vaclav Kotesovec_, Jan 28 2019 %e A323766 The a(6) = 25 constant multiset partitions of constant multiset partitions of integer partitions of 6: %e A323766 ((6)) %e A323766 ((52)) %e A323766 ((42)) %e A323766 ((33)) %e A323766 ((3)(3)) %e A323766 ((3))((3)) %e A323766 ((411)) %e A323766 ((321)) %e A323766 ((222)) %e A323766 ((2)(2)(2)) %e A323766 ((2))((2))((2)) %e A323766 ((3111)) %e A323766 ((2211)) %e A323766 ((21)(21)) %e A323766 ((21))((21)) %e A323766 ((21111)) %e A323766 ((111111)) %e A323766 ((111)(111)) %e A323766 ((11)(11)(11)) %e A323766 ((111))((111)) %e A323766 ((11))((11))((11)) %e A323766 ((1)(1)(1)(1)(1)(1)) %e A323766 ((1)(1)(1))((1)(1)(1)) %e A323766 ((1)(1))((1)(1))((1)(1)) %e A323766 ((1))((1))((1))((1))((1))((1)) %t A323766 Table[If[n==0,1,Sum[PartitionsP[d]*DivisorSigma[0,n/d],{d,Divisors[n]}]],{n,0,30}] %o A323766 (PARI) a(n) = if (n==0, 1, sumdiv(n, d, numbpart(d)*numdiv(n/d))); \\ _Michel Marcus_, Jan 28 2019 %Y A323766 Cf. A000005, A000041, A000837, A001970, A034729, A047968, A306017, A319066, A323764, A323765, A323774. %K A323766 nonn %O A323766 0,3 %A A323766 _Gus Wiseman_, Jan 27 2019