This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323776 #9 Jan 28 2019 10:25:39 %S A323776 1,3,7,16,40,119,450,2253,15207,139190,1731703,29335875,677864041, %T A323776 21400069232,924419728471,54716596051100,4443400439075834, %U A323776 495676372493566749,76041424515817042402,16060385520094706930608,4674665948889147697184915 %N A323776 a(n) = Sum_{k = 1...n} binomial(k + 2^(n - k) - 1, k - 1). %C A323776 Number of multiset partitions of integer partitions of 2^(n - 1) whose parts are constant and have equal sums. %H A323776 Seiichi Manyama, <a href="/A323776/b323776.txt">Table of n, a(n) for n = 1..120</a> %e A323776 The a(1) = 1 through a(4) = 16 partitions of partitions: %e A323776 (1) (2) (4) (8) %e A323776 (11) (22) (44) %e A323776 (1)(1) (1111) (2222) %e A323776 (2)(2) (4)(4) %e A323776 (2)(11) (4)(22) %e A323776 (11)(11) (22)(22) %e A323776 (1)(1)(1)(1) (4)(1111) %e A323776 (11111111) %e A323776 (22)(1111) %e A323776 (1111)(1111) %e A323776 (2)(2)(2)(2) %e A323776 (2)(2)(2)(11) %e A323776 (2)(2)(11)(11) %e A323776 (2)(11)(11)(11) %e A323776 (11)(11)(11)(11) %e A323776 (1)(1)(1)(1)(1)(1)(1)(1) %t A323776 Table[Sum[Binomial[k+2^(n-k)-1,k-1],{k,n}],{n,20}] %o A323776 (PARI) a(n) = sum(k=1, n, binomial(k+2^(n-k)-1, k-1)); \\ _Michel Marcus_, Jan 28 2019 %Y A323776 Cf. A000123, A001970, A002577, A006171, A007716, A034729, A047968, A279787, A279789, A305551, A306017, A319056, A323766, A323774, A323775. %K A323776 nonn %O A323776 1,2 %A A323776 _Gus Wiseman_, Jan 27 2019