This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323793 #8 Feb 23 2019 10:11:34 %S A323793 1,1,5,15,65,240,1090,4845 %N A323793 Number of non-isomorphic weight-n multisets of multisets of sets. %C A323793 Also the number of non-isomorphic multiset partitions of set multipartitions of weight n. %C A323793 All sets and multisets must be finite, and only the outermost may be empty. %C A323793 The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity. %e A323793 Non-isomorphic representatives of the a(1) = 1 through a(3) = 15 multiset partitions: %e A323793 {{1}} {{12}} {{123}} %e A323793 {{1}{1}} {{1}{12}} %e A323793 {{1}{2}} {{1}{23}} %e A323793 {{1}}{{1}} {{1}{1}{1}} %e A323793 {{1}}{{2}} {{1}}{{12}} %e A323793 {{1}{1}{2}} %e A323793 {{1}}{{23}} %e A323793 {{1}{2}{3}} %e A323793 {{1}}{{1}{1}} %e A323793 {{1}}{{1}{2}} %e A323793 {{1}}{{2}{3}} %e A323793 {{2}}{{1}{1}} %e A323793 {{1}}{{1}}{{1}} %e A323793 {{1}}{{1}}{{2}} %e A323793 {{1}}{{2}}{{3}} %Y A323793 Cf. A007716, A049311, A283877, A306186, A316980, A318565, A318566. %Y A323793 Cf. A323787, A323788, A323789, A323790, A323791, A323792, A323794, A323795. %K A323793 nonn,more %O A323793 0,3 %A A323793 _Gus Wiseman_, Jan 27 2019