cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323793 Number of non-isomorphic weight-n multisets of multisets of sets.

This page as a plain text file.
%I A323793 #8 Feb 23 2019 10:11:34
%S A323793 1,1,5,15,65,240,1090,4845
%N A323793 Number of non-isomorphic weight-n multisets of multisets of sets.
%C A323793 Also the number of non-isomorphic multiset partitions of set multipartitions of weight n.
%C A323793 All sets and multisets must be finite, and only the outermost may be empty.
%C A323793 The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.
%e A323793 Non-isomorphic representatives of the a(1) = 1 through a(3) = 15 multiset partitions:
%e A323793   {{1}}  {{12}}      {{123}}
%e A323793          {{1}{1}}    {{1}{12}}
%e A323793          {{1}{2}}    {{1}{23}}
%e A323793          {{1}}{{1}}  {{1}{1}{1}}
%e A323793          {{1}}{{2}}  {{1}}{{12}}
%e A323793                      {{1}{1}{2}}
%e A323793                      {{1}}{{23}}
%e A323793                      {{1}{2}{3}}
%e A323793                      {{1}}{{1}{1}}
%e A323793                      {{1}}{{1}{2}}
%e A323793                      {{1}}{{2}{3}}
%e A323793                      {{2}}{{1}{1}}
%e A323793                      {{1}}{{1}}{{1}}
%e A323793                      {{1}}{{1}}{{2}}
%e A323793                      {{1}}{{2}}{{3}}
%Y A323793 Cf. A007716, A049311, A283877, A306186, A316980, A318565, A318566.
%Y A323793 Cf. A323787, A323788, A323789, A323790, A323791, A323792, A323794, A323795.
%K A323793 nonn,more
%O A323793 0,3
%A A323793 _Gus Wiseman_, Jan 27 2019