cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323795 Number of non-isomorphic weight-n sets of non-overlapping sets of sets.

This page as a plain text file.
%I A323795 #5 Jan 29 2019 11:47:47
%S A323795 1,1,3,8,27,82,310,1163
%N A323795 Number of non-isomorphic weight-n sets of non-overlapping sets of sets.
%C A323795 Also the number of non-isomorphic set partitions of set-systems of weight n.
%C A323795 All sets and multisets must be finite, and only the outermost may be empty.
%C A323795 The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.
%e A323795 Non-isomorphic representatives of the a(1) = 1 through a(4) = 27 multiset partitions:
%e A323795   {{1}}  {{12}}      {{123}}          {{1234}}
%e A323795          {{1}{2}}    {{1}{12}}        {{1}{123}}
%e A323795          {{1}}{{2}}  {{1}{23}}        {{12}{13}}
%e A323795                      {{1}}{{12}}      {{1}{234}}
%e A323795                      {{1}}{{23}}      {{12}{34}}
%e A323795                      {{1}{2}{3}}      {{1}}{{123}}
%e A323795                      {{1}}{{2}{3}}    {{1}{2}{12}}
%e A323795                      {{1}}{{2}}{{3}}  {{1}{2}{13}}
%e A323795                                       {{12}}{{13}}
%e A323795                                       {{1}}{{234}}
%e A323795                                       {{1}{2}{34}}
%e A323795                                       {{12}}{{34}}
%e A323795                                       {{1}}{{2}{12}}
%e A323795                                       {{12}}{{1}{2}}
%e A323795                                       {{1}}{{2}{13}}
%e A323795                                       {{12}}{{1}{3}}
%e A323795                                       {{1}}{{2}{34}}
%e A323795                                       {{1}{2}{3}{4}}
%e A323795                                       {{12}}{{3}{4}}
%e A323795                                       {{2}}{{1}{13}}
%e A323795                                       {{1}}{{2}}{{12}}
%e A323795                                       {{1}}{{2}}{{13}}
%e A323795                                       {{1}}{{2}}{{34}}
%e A323795                                       {{1}}{{2}{3}{4}}
%e A323795                                       {{1}{2}}{{3}{4}}
%e A323795                                       {{1}}{{2}}{{3}{4}}
%e A323795                                       {{1}}{{2}}{{3}}{{4}}
%Y A323795 Cf. A004111, A007716, A049311, A050326, A050343, A283877, A306186, A318566.
%Y A323795 Cf. A323787, A323788, A323789, A323790, A323791, A323792, A323793, A323794.
%K A323795 nonn,more
%O A323795 0,3
%A A323795 _Gus Wiseman_, Jan 28 2019