A323808 Squares visited by a knight on a spirally numbered board and moving to the lowest available unvisited square at each step and if no unvisited squares are available move one step back.
1, 10, 3, 6, 9, 4, 7, 2, 5, 8, 11, 14, 29, 32, 15, 12, 27, 24, 45, 20, 23, 44, 41, 18, 35, 38, 19, 16, 33, 30, 53, 26, 47, 22, 43, 70, 21, 40, 17, 34, 13, 28, 25, 46, 75, 42, 69, 104, 37, 62, 95, 58, 55, 86, 51, 48, 77, 114, 73, 108, 151, 68, 103, 64, 67, 36, 39, 66, 63
Offset: 1
Examples
The board is numbered with the square spiral: 17--16--15--14--13 : | | : 18 5---4---3 12 29 | | | | | 19 6 1---2 11 28 | | | | 20 7---8---9--10 27 | | 21--22--23--24--25--26 See A323809 for examples where "backtracking" happens. - _M. F. Hasler_, Nov 06 2019
Links
- Daniël Karssen, Table of n, a(n) for n = 1..100000
- M. F. Hasler, Knight tours, OEIS wiki, Nov. 2019.
- Daniël Karssen, Figure showing the first 1e5 steps of the sequence
Crossrefs
Programs
-
PARI
A323808(n)=A323809(n-1)+1 \\ M. F. Hasler, Nov 06 2019
Formula
a(n) = A323809(n-1) + 1. - M. F. Hasler, Nov 06 2019
Comments