This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323817 #10 Oct 06 2022 08:17:20 %S A323817 1,0,1,12,1990,67098648,144115187673201808, %T A323817 1329227995784915871895000743748659792, %U A323817 226156424291633194186662080095093570015284114833799899656335137245499581360 %N A323817 Number of connected set-systems covering n vertices with no singletons. %H A323817 G. C. Greubel, <a href="/A323817/b323817.txt">Table of n, a(n) for n = 0..11</a> %F A323817 Logarithmic transform of A323816. %e A323817 The a(3) = 12 set-systems: %e A323817 {{1, 2, 3}} %e A323817 {{1, 2}, {1, 3}} %e A323817 {{1, 2}, {2, 3}} %e A323817 {{1, 3}, {2, 3}} %e A323817 {{1, 2}, {1, 2, 3}} %e A323817 {{1, 3}, {1, 2, 3}} %e A323817 {{2, 3}, {1, 2, 3}} %e A323817 {{1, 2}, {1, 3}, {2, 3}} %e A323817 {{1, 2}, {1, 3}, {1, 2, 3}} %e A323817 {{1, 2}, {2, 3}, {1, 2, 3}} %e A323817 {{1, 3}, {2, 3}, {1, 2, 3}} %e A323817 {{1, 2}, {1, 3}, {2, 3},{1, 2, 3}} %e A323817 The A323816(4) - a(4) = 3 disconnected set-systems covering n vertices with no singletons: %e A323817 {{1, 2}, {3, 4}} %e A323817 {{1, 3}, {2, 4}} %e A323817 {{1, 4}, {2, 3}} %p A323817 b:= n-> add(2^(2^(n-j)-n+j-1)*binomial(n, j)*(-1)^j, j=0..n): %p A323817 a:= proc(n) option remember; b(n)-`if`(n=0, 0, add( %p A323817 k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n) %p A323817 end: %p A323817 seq(a(n), n=0..8); # _Alois P. Heinz_, Jan 30 2019 %t A323817 nn=10; %t A323817 ser=Sum[Sum[(-1)^(n-k)*Binomial[n,k]*2^(2^k-k-1),{k,0,n}]*x^n/n!,{n,0,nn}]; %t A323817 Table[SeriesCoefficient[1+Log[ser],{x,0,n}]*n!,{n,0,nn}] %o A323817 (Magma) %o A323817 m:=10; %o A323817 A323816:= func< n | (&+[(-1)^(n-j)*Binomial(n,j)*2^(2^j -j-1): j in [0..n]]) >; %o A323817 f:= func< x | 1 + Log((&+[A323816(j)*x^j/Factorial(j): j in [0..m+2]])) >; %o A323817 R<x>:=PowerSeriesRing(Rationals(), m+1); %o A323817 Coefficients(R!(Laplace( f(x) ))); // _G. C. Greubel_, Oct 05 2022 %o A323817 (SageMath) %o A323817 m=10 %o A323817 def A323816(n): return sum((-1)^j*binomial(n,j)*2^(2^(n-j) -n+j-1) for j in range(n+1)) %o A323817 def A323817_list(prec): %o A323817 P.<x> = PowerSeriesRing(QQ, prec) %o A323817 return P( 1 + log(sum(A323816(j)*x^j/factorial(j) for j in range(m+2))) ).egf_to_ogf().list() %o A323817 A323817_list(m) # _G. C. Greubel_, Oct 05 2022 %Y A323817 Cf. A001187, A016031, A048143, A092918, A293510, A317795, A323816 (not necessarily connected), A323818 (with singletons), A323819, A323820 (unlabeled case). %K A323817 nonn %O A323817 0,4 %A A323817 _Gus Wiseman_, Jan 30 2019