This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323818 #13 Oct 05 2022 03:24:39 %S A323818 1,1,4,96,31840,2147156736,9223372011084915712, %T A323818 170141183460469231602560095199828453376, %U A323818 57896044618658097711785492504343953923912733397452774312021795134847892828160 %N A323818 Number of connected set-systems covering n vertices. %C A323818 Unlike the nearly identical sequence A092918, this sequence does not count under a(1) the a single-vertex hypergraph with no edges. %H A323818 G. C. Greubel, <a href="/A323818/b323818.txt">Table of n, a(n) for n = 0..11</a> %F A323818 E.g.f.: 1 - x + log(Sum_{n >= 0} 2^(2^n-1) * x^n/n!). %F A323818 Logarithmic transform of A003465. %e A323818 The a(2) = 4 set-systems: %e A323818 {{1, 2}} %e A323818 {{1}, {1,2}} %e A323818 {{2}, {1,2}} %e A323818 {{1}, {2}, {1,2}} %p A323818 b:= n-> add(binomial(n, k)*2^(2^(n-k)-1)*(-1)^k, k=0..n): %p A323818 a:= proc(n) option remember; b(n)-`if`(n=0, 0, add( %p A323818 k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n) %p A323818 end: %p A323818 seq(a(n), n=0..8); # _Alois P. Heinz_, Jan 30 2019 %t A323818 nn=8; %t A323818 ser=Sum[2^(2^n-1)*x^n/n!,{n,0,nn}]; %t A323818 Table[SeriesCoefficient[1-x+Log[ser],{x,0,n}]*n!,{n,0,nn}] %o A323818 (Magma) %o A323818 m:=12; %o A323818 f:= func< x | 1-x + Log( (&+[2^(2^n-1)*x^n/Factorial(n): n in [0..m+2]]) ) >; %o A323818 R<x>:=PowerSeriesRing(Rationals(), m); %o A323818 Coefficients(R!(Laplace( f(x) ))); // _G. C. Greubel_, Oct 04 2022 %o A323818 (SageMath) %o A323818 m=12; %o A323818 def f(x): return 1-x + log(sum(2^(2^n-1)*x^n/factorial(n) for n in range(m+2))) %o A323818 def A_list(prec): %o A323818 P.<x> = PowerSeriesRing(QQ, prec) %o A323818 return P( f(x) ).egf_to_ogf().list() %o A323818 A_list(m) # _G. C. Greubel_, Oct 04 2022 %Y A323818 Cf. A001187, A003465 (not necessarily connected), A016031, A048143, A092918, A293510, A317672, A323816, A323817 (no singletons), A323819 (unlabeled case). %K A323818 nonn %O A323818 0,3 %A A323818 _Gus Wiseman_, Jan 30 2019