A323830 a(0) = 1; thereafter a(n) is obtained by doubling a(n-1) and repeatedly deleting any string of identical digits.
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 636, 1272, 25, 50, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 636, 1272, 25, 50, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 636, 1272, 25, 50
Offset: 0
Examples
After a(15) = 32768 we get 65536 which becomes 636 after deleting "55". Then doubling 636 we get 1272, then 2544 which becomes 25 after deleting "44", then 50, then 100 which becomes 1 after deleting "00", and now the sequence repeats.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
Crossrefs
Programs
-
Mathematica
dad[n_]:=FromDigits[FixedPoint[Flatten[Select[Split[#],Length[#]==1&]]&,IntegerDigits[2n]]];NestList[dad,1,100] (* Paolo Xausa, Nov 14 2023 *)
-
PARI
Vec((1 + 2*x)*(1 + 4*x^2 + 16*x^4 + 64*x^6 + 256*x^8 + 1024*x^10 + 4096*x^12 + 16384*x^14 + 636*x^16 + 25*x^18) / (1 - x^20) + O(x^40)) \\ Colin Barker, Feb 03 2019
Formula
From Colin Barker, Feb 03 2019: (Start)
G.f.: (1 + 2*x)*(1 + 4*x^2 + 16*x^4 + 64*x^6 + 256*x^8 + 1024*x^10 + 4096*x^12 + 16384*x^14 + 636*x^16 + 25*x^18) / (1 - x^20).
a(n) = a(n-20) for n>19.
(End)
a(n+1) = A321801(2*a(n)). For general numbers, the "repeatedly delete any run of identical digits" operation corresponds to repeatedly applying A321801. - Chai Wah Wu, Feb 11 2019
Comments