This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323833 #45 Jun 11 2025 06:46:56 %S A323833 0,1,1,1,0,-1,-2,-3,-3,-2,-5,-3,0,3,5,16,21,24,24,21,16,61,45,24,0, %T A323833 -24,-45,-61,-272,-333,-378,-402,-402,-378,-333,-272,-1385,-1113,-780, %U A323833 -402,0,402,780,1113,1385,7936,9321,10434,11214,11616,11616,11214,10434,9321,7936 %N A323833 A Seidel matrix A(n,k) read by antidiagonals upwards. %C A323833 The first row is a signed version of the Euler numbers A000111. %C A323833 Other rows are defined by A(n+1,k) = A(n,k) + A(n,k+1). %H A323833 Alois P. Heinz, <a href="/A323833/b323833.txt">Antidiagonals n = 0..140, flattened</a> %H A323833 A. Randrianarivony and J. Zeng, <a href="http://dx.doi.org/10.1006/aama.1996.0001">Une famille de polynomes qui interpole plusieurs suites classiques de nombres</a>, Adv. Appl. Math. 17 (1996), 1-26. See Section 6 (matrix a_{n,k} on p. 18). %F A323833 From _Petros Hadjicostas_, Mar 04 2021: (Start) %F A323833 Formulas about the square array A(n,k) (n,k > 0): %F A323833 A(n,0) = -A163747(n) = (-1)^(n+1)*A(0,n) = if(n==0, 0, (-1)^floor(n/2)*A000111(n)). %F A323833 A(n,n) = 0 and A(n,k) + (-1)^(n+k)*A(k,n) = 0. %F A323833 A(n, k) = Sum_{i=0..n} binomial(n, i)*A(0,k+i). %F A323833 Joint e.g.f.: Sum_{n,k >= 0} A(n,k)*(x^n/n!)*(y^k/k!) = 2*exp(-y)*(1 - exp(-x - y)) / (1 + exp(-2*(x + y))) = 2*exp(x)*(exp(x+y) - 1) / (exp(2*(x+y)) + 1). %F A323833 Formulas about the triangular array T(n,k) = A(n-k,k) (0 <= k <= n): %F A323833 T(n+1,k+1) = T(n+1,k) - T(n,k). %F A323833 T(n,k) = -(-1)^n*T(n,n-k). %F A323833 T(n,k) = Sum_{i=0..n-k} binomial(n-k,i)*T(k+i,k+i) for k=0..n with initial condition T(n,n) = (-1)^n*A163747(n). (End) %e A323833 Triangular array T(n,k) = A(n-k,k) (n >= 0, k = 0..n), read from the antidiagonals upwards of square array A: %e A323833 0; %e A323833 1, 1; %e A323833 1, 0, -1; %e A323833 -2, -3, -3, -2; %e A323833 -5, -3, 0, 3, 5; %e A323833 16, 21, 24, 24, 21, 16; %e A323833 61, 45, 24, 0, -24, -45, -61; %e A323833 -272, -333, -378, -402, -402, -378, -333, -272; %e A323833 ... %e A323833 From _Petros Hadjicostas_, Mar 04 2021: (Start) %e A323833 Square array A(n,k) (n, k >= 0) begins: %e A323833 0, 1, -1, -2, 5, 16, -61, -272, 1385, ... %e A323833 1, 0, -3, 3, 21, -45, -333, 1113, 9321, ... %e A323833 1, -3, 0, 24, -24, -378, 780, 10434, -33264, ... %e A323833 -2, -3, 24, 0, -402, 402, 11214, -22830, -480162, ... %e A323833 -5, 21, 24, -402, 0, 11616, -11616, -502992, 1017600, ... %e A323833 16, 45, -378, -402, 11616, 0, -514608, 514608, 31880016, ... %e A323833 ... (End) %p A323833 A323833 := proc(n,k) %p A323833 option remember; %p A323833 local i ; %p A323833 if k =0 then %p A323833 -A163747(n) ; %p A323833 elif n =0 then %p A323833 (-1)^k*A163747(k) ; %p A323833 elif k =n then %p A323833 0 ; %p A323833 else %p A323833 add(binomial(n,i)*procname(0,k+i), i=0..n) ; %p A323833 end if; %p A323833 end proc: %p A323833 seq(seq(A323833(d-k,k),k=0..d),d=0..12) ; # _R. J. Mathar_, Jun 11 2025 %o A323833 (PARI) {b(n) = local(v=[1], t); if( n<0, 0, for(k=2, n+2, t=0; v = vector(k, i, if( i>1, t+= v[k+1-i]))); v[2])}; \\ _Michael Somos_'s PARI program for A000111. %o A323833 c(n) = if(n==0, 0, (-1)^floor(n/2)*b(n)) %o A323833 A(n, k) = sum(i=0, n, binomial(n, i)*c(k+i)) \\ _Petros Hadjicostas_, Mar 04 2021 %Y A323833 Cf. A000111, A002832 (next-to-main diagonal), A163747, A323834. %K A323833 sign,tabl %O A323833 0,7 %A A323833 _N. J. A. Sloane_, Feb 03 2019 %E A323833 More terms from _Alois P. Heinz_, Feb 09 2019