This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323840 #23 Jul 07 2021 11:14:16 %S A323840 1,1,1,1,1,3,1,1,1,3,13,15,15,7,1,1,1,3,13,75,165,357,645,927,1095, %T A323840 957,627,299,91,15,1,1,1,3,13,75,525,1827,5965,18315,51885,130977, %U A323840 304953,646373,1238601,2143065,3331429,4663967,5867703 %N A323840 Irregular triangle read by rows: T(n,k) is the number of compositions of 2^n into k powers of 2. %H A323840 James Rayman, <a href="/A323840/b323840.txt">Rows n = 0..10, flattened</a> %H A323840 S. Lehr, J. Shallit and J. Tromp, <a href="http://dx.doi.org/10.1016/0304-3975(95)00234-0">On the vector space of the automatic reals</a>, Theoret. Comput. Sci. 163 (1996), no. 1-2, 193-210. See Table 2. %F A323840 T(n, k) = A073266(2^n, k). - _James Rayman_, Mar 30 2021 %e A323840 The first few rows are: %e A323840 1; %e A323840 1, 1; %e A323840 1, 1, 3, 1; %e A323840 1, 1, 3, 13, 15, 15, 7, 1; %e A323840 1, 1, 3, 13, 75, 165, 357, 645, 927, 1095, 957, 627, 299, 91, 15, 1; %e A323840 ... %e A323840 The counts for row 3 arise as follows: %e A323840 8 (1) %e A323840 = 4+4 (1) %e A323840 = 4+2+2 (3) %e A323840 = 4+2+1+1 or 2+2+2+2 (12+1=13) %e A323840 = 4+1+1+1+1 or 2+2+2+1+1 (5+10=15) %e A323840 = 2+2+1+1+1+1 (15) %e A323840 = 2+1+1+1+1+1+1 (7) %e A323840 = 1+1+1+1+1+1+1+1 (1) %p A323840 b:= proc(n) option remember; expand(`if`(n=0, 1, %p A323840 add(x*b(n-2^j), j=0..ilog2(n)))) %p A323840 end: %p A323840 T:= n-> (p-> seq(coeff(p, x, i), i=1..2^n))(b(2^n)): %p A323840 seq(T(n), n=0..5); # _Alois P. Heinz_, Mar 31 2021 %t A323840 b[n_] := b[n] = Expand[If[n == 0, 1, %t A323840 Sum[x*b[n - 2^j], {j, 0, Length@IntegerDigits[n, 2]-1}]]]; %t A323840 T[n_] := With[{p = b[2^n]}, Table[Coefficient[p, x, i], {i, 1, 2^n}]]; %t A323840 Table[T[n], {n, 0, 5}] // Flatten (* _Jean-François Alcover_, Jul 07 2021, after _Alois P. Heinz_ *) %o A323840 (Python) %o A323840 from functools import lru_cache %o A323840 @lru_cache(maxsize=None) %o A323840 def t(n, k): %o A323840 if n < k: return 0 %o A323840 if k == 0: return 1 if n == 0 else 0 %o A323840 r = 0 %o A323840 i = 1 %o A323840 while True: %o A323840 if i > n: break %o A323840 r += t(n - i, k-1) %o A323840 i *= 2 %o A323840 return r %o A323840 def T(n, k): return t(2**n, k) # _James Rayman_, Mar 30 2021 %Y A323840 The rows are a subset of the rows of A073266. %Y A323840 Row sums give A248377. %Y A323840 T(n,n) gives A007178 (for n>=1). %Y A323840 Cf. A023359. %K A323840 nonn,tabf %O A323840 0,6 %A A323840 _N. J. A. Sloane_, Feb 04 2019 %E A323840 More terms from _James Rayman_, Mar 30 2021