This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323854 #9 Mar 14 2025 21:17:42 %S A323854 1,3,1,11,2,1,25,35,5,1,137,15,17,3,1,49,203,49,35,7,1,363,469,967,28, %T A323854 23,4,1,761,29531,801,1069,27,39,9,1,7129,6515,4523,285,3013,75,145,5, %U A323854 1,7381,177133,84095,341693,8591,7513,605,44,11,1,83711,190553,341747,139381,242537,1903,10831,33,35,6,1 %N A323854 Triangle read by rows: T(n,k) is the numerator of the generalized harmonic number H(n,k) of rank k (n >= 1, 0 <= k <= n - 1). %C A323854 Santmyer (1997) defined the generalized harmonic numbers H(n,k) of rank k by H(n,k) = Sum_{n_0 + n_1 + ... + n_k <= n} 1/(n_0*n_1*...*n_k). %C A323854 If n >= 0, then the triangle {A323854(n+1,k)/A323855(n+1,k)}_{n,k} is the Riordan array (-log(1 - x)/(x*(1 - x)), -log(1 - x)/x). %H A323854 Gi-Sang Cheon and Moawwad E. A. El-Mikkawy, <a href="https://doi.org/10.4134/JKMS.2007.44.2.487">Generalized harmonic number identities and a related matrix representation</a>, J. Korean Math. Soc, Volume 44, 2007, 487-498. %H A323854 Gi-Sang Cheon and Moawwad E. A. El-Mikkawy, <a href="https://doi.org/10.1016/j.jnt.2007.08.011">Generalized harmonic numbers with Riordan arrays</a>, Journal of Number Theory, Volume 128, Issue 2, 2008, 413-425. %H A323854 Joseph M. Santmyer, <a href="http://dx.doi.org/10.1016/S0012-365X(96)00082-9">A Stirling like sequence of rational numbers</a>, Discrete Math., Volume 171, no. 1-3, 1997, 229-235, MR1454453. %F A323854 T(n,k) = numerator of H(n,k), where H(n,k) = ((1/n!)*(-1)^(n+k+1))*(((d/dt)^n (1/t)*log(t)^(k+1))_{t=1}). %e A323854 The triangle H(n,k) begins: %e A323854 n\k | 0 1 2 3 4 5 6 %e A323854 ----------------------------------------------------- %e A323854 1 | 1 %e A323854 2 | 3/2 1 %e A323854 3 | 11/6 2 1 %e A323854 4 | 25/12 35/12 5/2 1 %e A323854 5 | 137/60 15/4 17/4 3 1 %e A323854 6 | 49/20 203/45 49/8 35/6 7/2 1 %e A323854 7 | 363/140 469/90 967/120 28/3 23/3 4 1 %e A323854 ... %t A323854 H[n_, k_] := -(-1)^(n + k)/n!*(D[Log[t]^(k + 1)/t, {t, n}] /. t->1) %t A323854 Table[Numerator[H[n, k]], {n, 1, 20}, {k, 0, n - 1}] // Flatten %o A323854 (Maxima) %o A323854 H(n, k) := -(-1)^(k + n)/n!*at(diff(log(t)^(k + 1)/t, t, n), t = 1)$ %o A323854 create_list(num(H(n, k)), n, 1, 20, k, 0, n - 1); %o A323854 (PARI) T(n, k) = -(-1)^(n+k)*numerator(substvec(diffop(L^(k+1)/X, [L, X], [1/X, 1], n), [L, X], [0, 1])/n!); \\ _Jinyuan Wang_, Mar 13 2025 %Y A323854 Cf. A001008 (column 0), A323855 (denominators). %K A323854 nonn,easy,tabl,frac %O A323854 1,2 %A A323854 _Franck Maminirina Ramaharo_, Feb 01 2019