This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323855 #10 Mar 19 2025 10:04:06 %S A323855 1,2,1,6,1,1,12,12,2,1,60,4,4,1,1,20,45,8,6,2,1,140,90,120,3,3,1,1, %T A323855 280,5040,80,80,2,4,2,1,2520,1008,378,16,144,4,12,1,1,2520,25200,6048, %U A323855 15120,288,240,24,3,2,1,27720,25200,21600,5040,6048,40,240,1,2,1,1 %N A323855 Triangle read by rows: T(n,k) is the denominator of the generalized harmonic number H(n,k) of rank k (n >= 1, 0 <= k <= n - 1). %C A323855 See A323854 for the definition of H(n,k). %H A323855 Gi-Sang Cheon and Moawwad E. A. El-Mikkawy, <a href="https://doi.org/10.4134/JKMS.2007.44.2.487">Generalized harmonic number identities and a related matrix representation</a>, J. Korean Math. Soc, Volume 44, 2007, 487-498. %H A323855 Gi-Sang Cheon and Moawwad E. A. El-Mikkawy, <a href="https://doi.org/10.1016/j.jnt.2007.08.011">Generalized harmonic numbers with Riordan arrays</a>, Journal of Number Theory, Volume 128, Issue 2, 2008, 413-425. %H A323855 Joseph M. Santmyer, <a href="http://dx.doi.org/10.1016/S0012-365X(96)00082-9">A Stirling like sequence of rational numbers</a>, Discrete Math., Volume 171, no. 1-3, 1997, 229-235, MR1454453. %F A323855 T(n,k) = denominator of H(n,k), where H(n,k) = ((1/n!)*(-1)^(n+k+1))*(((d/dt)^n (1/t)*log(t)^(k+1))_{t=1}). %e A323855 Triangle T(n,k) begins: %e A323855 n\k | 0 1 2 3 4 5 6 %e A323855 --------------------------------------- %e A323855 1 | 1 %e A323855 2 | 2 1 %e A323855 3 | 6 1 1 %e A323855 4 | 12 12 2 1 %e A323855 5 | 60 4 4 3 1 %e A323855 6 | 20 45 8 6 2 1 %e A323855 7 | 140 90 120 3 3 1 1 %e A323855 ... %t A323855 H[n_, k_] := -(-1)^(n + k)/n!*(D[Log[t]^(k + 1)/t, {t, n}] /. t->1) %t A323855 Table[Denominator[H[n, k]], {n, 1, 20}, {k, 0, n - 1}] // Flatten %o A323855 (Maxima) %o A323855 H(n, k) := -(-1)^(k + n)/n!*at(diff(log(t)^(k + 1)/t, t, n), t = 1)$ %o A323855 create_list(denom(H(n, k)), n, 1, 20, k, 0, n - 1); %o A323855 (PARI) T(n, k) = denominator(substvec(diffop(L^(k+1)/X, [L, X], [1/X, 1], n), [L, X], [0, 1])/n!); \\ _Jinyuan Wang_, Mar 13 2025 %Y A323855 Cf. A002805 (Column 0), A323854 (numerators). %K A323855 nonn,easy,tabl,frac %O A323855 1,2 %A A323855 _Franck Maminirina Ramaharo_, Feb 01 2019