cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323858 Number of toroidal necklaces of positive integers summing to n.

This page as a plain text file.
%I A323858 #10 Aug 18 2019 22:29:06
%S A323858 1,1,3,5,10,14,31,44,90,154,296,524,1035,1881,3636,6869,13208,25150,
%T A323858 48585,93188,180192,347617,673201,1303259,2529740,4910708,9549665,
%U A323858 18579828,36192118,70540863,137620889,268655549,524873503,1026068477,2007178821,3928564237
%N A323858 Number of toroidal necklaces of positive integers summing to n.
%C A323858 The 1-dimensional (necklace) case is A008965.
%C A323858 We define a toroidal necklace to be an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns. Alternatively, a toroidal necklace is a matrix that is minimal among all possible rotations of its sequence of rows and its sequence of columns.
%H A323858 Andrew Howroyd, <a href="/A323858/b323858.txt">Table of n, a(n) for n = 0..200</a>
%H A323858 S. N. Ethier, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Ethier/ethier2.html">Counting toroidal binary arrays</a>, J. Int. Seq. 16 (2013) #13.4.7.
%e A323858 Inequivalent representatives of the a(6) = 31 toroidal necklaces:
%e A323858   6  15  24  33  114  123  132  222  1113  1122  1212  11112  111111
%e A323858 .
%e A323858   1  2  3  11  11  12  12  111
%e A323858   5  4  3  13  22  12  21  111
%e A323858 .
%e A323858   1  1  1  2  11
%e A323858   1  2  3  2  11
%e A323858   4  3  2  2  11
%e A323858 .
%e A323858   1  1  1
%e A323858   1  1  2
%e A323858   1  2  1
%e A323858   3  2  2
%e A323858 .
%e A323858   1
%e A323858   1
%e A323858   1
%e A323858   1
%e A323858   2
%e A323858 .
%e A323858   1
%e A323858   1
%e A323858   1
%e A323858   1
%e A323858   1
%e A323858   1
%t A323858 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A323858 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A323858 ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
%t A323858 neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
%t A323858 Table[Length[Join@@Table[Select[ptnmats[k],neckmatQ],{k,Times@@Prime/@#&/@IntegerPartitions[n]}]],{n,10}]
%o A323858 (PARI)
%o A323858 U(n,m,k) = (1/(n*m)) * sumdiv(n, c, sumdiv(m, d, eulerphi(c) * eulerphi(d) * subst(k, x, x^lcm(c,d))^(n*m/lcm(c, d))));
%o A323858 a(n)={if(n < 1, n==0, sum(i=1, n, sum(j=1, n\i, polcoef(U(i, j, x/(1-x) + O(x*x^n)), n))))} \\ _Andrew Howroyd_, Aug 18 2019
%Y A323858 Cf. A000031, A000670, A008965, A059966, A101509, A179043, A184271.
%Y A323858 Cf. A323859, A323861, A323865, A323866, A323870.
%K A323858 nonn
%O A323858 0,3
%A A323858 _Gus Wiseman_, Feb 04 2019
%E A323858 Terms a(18) and beyond from _Andrew Howroyd_, Aug 18 2019