This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323860 #9 Aug 22 2019 20:47:18 %S A323860 2,2,2,6,8,6,12,54,54,12,30,216,486,216,30,54,990,4020,4020,990,54, %T A323860 126,3912,32730,64800,32730,3912,126,240,16254,261414,1047540,1047540, %U A323860 261414,16254,240,504,64800,2097018,16764840,33554250,16764840,2097018,64800,504 %N A323860 Table read by antidiagonals where A(n,k) is the number of n X k aperiodic binary arrays. %C A323860 The 1-dimensional case is A027375. %C A323860 An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct. %H A323860 Andrew Howroyd, <a href="/A323860/b323860.txt">Table of n, a(n) for n = 1..1275</a> %F A323860 T(n,k) = n*k*A323861(n,k). - _Andrew Howroyd_, Aug 21 2019 %e A323860 Table begins: %e A323860 1 2 3 4 %e A323860 ------------------------ %e A323860 1: | 2 2 6 12 %e A323860 2: | 2 8 54 216 %e A323860 3: | 6 54 486 4020 %e A323860 4: | 12 216 4020 64800 %e A323860 The A(2,2) = 8 arrays: %e A323860 [0 0] [0 0] [0 1] [0 1] [1 0] [1 0] [1 1] [1 1] %e A323860 [0 1] [1 0] [0 0] [1 1] [0 0] [1 1] [0 1] [1 0] %e A323860 Note that the following are not aperiodic even though their row and column sequences are independently aperiodic: %e A323860 [1 0] [0 1] %e A323860 [0 1] [1 0] %t A323860 apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]; %t A323860 Table[Length[Select[Partition[#,n-k]&/@Tuples[{0,1},(n-k)*k],apermatQ]],{n,8},{k,n-1}] %o A323860 (GAP) # See A323861 for code. %o A323860 for n in [1..8] do for k in [1..8] do Print(n*k*A323861(n,k), ", "); od; Print("\n"); od; # _Andrew Howroyd_, Aug 21 2019 %Y A323860 First and last columns are A027375. Main diagonal is A323863. %Y A323860 Cf. A000740, A001037, A179043, A265627, A323351. %Y A323860 Cf. A323861, A323862, A323864, A323865, A323867, A323869. %K A323860 nonn,tabl %O A323860 1,1 %A A323860 _Gus Wiseman_, Feb 04 2019 %E A323860 Terms a(29) and beyond from _Andrew Howroyd_, Aug 21 2019