This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323865 #8 Aug 22 2019 22:19:14 %S A323865 1,2,2,4,8,12,36,36,114,166,396,372,1992,1260,4644,8728,20310,15420, %T A323865 87174,55188,314064,399432,762228,729444,5589620,4026522,10323180, %U A323865 19883920,57516048,37025580,286322136,138547332,805277760,1041203944,2021145660,3926827224 %N A323865 Number of aperiodic binary toroidal necklaces of size n. %C A323865 We define a toroidal necklace to be an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns. An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct. %H A323865 Andrew Howroyd, <a href="/A323865/b323865.txt">Table of n, a(n) for n = 0..200</a> %H A323865 S. N. Ethier, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Ethier/ethier2.html">Counting toroidal binary arrays</a>, J. Int. Seq. 16 (2013) #13.4.7. %F A323865 a(n) = Sum_{d|n} A323861(d, n/d) for n > 0. - _Andrew Howroyd_, Aug 21 2019 %e A323865 Inequivalent representatives of the a(6) = 36 aperiodic necklaces: %e A323865 000001 000011 000101 000111 001011 001101 001111 010111 011111 %e A323865 . %e A323865 000 000 001 001 001 001 001 011 011 %e A323865 001 011 010 011 101 110 111 101 111 %e A323865 . %e A323865 00 00 00 00 00 01 01 01 01 %e A323865 00 01 01 01 11 01 01 10 11 %e A323865 01 01 10 11 01 10 11 11 11 %e A323865 . %e A323865 0 0 0 0 0 0 0 0 0 %e A323865 0 0 0 0 0 0 0 1 1 %e A323865 0 0 0 0 1 1 1 0 1 %e A323865 0 0 1 1 0 1 1 1 1 %e A323865 0 1 0 1 1 0 1 1 1 %e A323865 1 1 1 1 1 1 1 1 1 %t A323865 apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]; %t A323865 neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]]; %t A323865 zaz[n_]:=Join@@(Table[Partition[#,d],{d,Divisors[n]}]&/@Tuples[{0,1},n]); %t A323865 Table[If[n==0,1,Length[Union[First/@matcyc/@Select[zaz[n],And[apermatQ[#],neckmatQ[#]]&]]]],{n,0,10}] %Y A323865 Cf. A000031, A001037, A027375, A179043, A184271, A323351. %Y A323865 Cf. A323858, A323859, A323860, A323861, A323864, A323871. %K A323865 nonn %O A323865 0,2 %A A323865 _Gus Wiseman_, Feb 04 2019 %E A323865 Terms a(19) and beyond from _Andrew Howroyd_, Aug 21 2019