cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323866 Number of aperiodic toroidal necklaces of positive integers summing to n.

This page as a plain text file.
%I A323866 #12 Jan 14 2024 00:15:27
%S A323866 1,1,1,3,5,12,18,42,72,145,262,522,960,1879,3531,6831,13013,25148,
%T A323866 48177,93186,179507,347509,671955,1303257,2527162,4910681,9545176,
%U A323866 18579471,36183505,70540861,137603801,268655547,524842088,1026067205,2007118657,3928564113
%N A323866 Number of aperiodic toroidal necklaces of positive integers summing to n.
%C A323866 The 1-dimensional (Lyndon word) case is A059966.
%C A323866 We define a toroidal necklace to be an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns. An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.
%H A323866 Andrew Howroyd, <a href="/A323866/b323866.txt">Table of n, a(n) for n = 0..200</a>
%H A323866 S. N. Ethier, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Ethier/ethier2.html">Counting toroidal binary arrays</a>, J. Int. Seq. 16 (2013) #13.4.7.
%e A323866 Inequivalent representatives of the a(6) = 18 toroidal necklaces:
%e A323866   [6] [1 5] [2 4] [1 1 4] [1 2 3] [1 3 2] [1 1 1 3] [1 1 2 2] [1 1 1 1 2]
%e A323866 .
%e A323866   [1] [2] [1 1]
%e A323866   [5] [4] [1 3]
%e A323866 .
%e A323866   [1] [1] [1]
%e A323866   [1] [2] [3]
%e A323866   [4] [3] [2]
%e A323866 .
%e A323866   [1] [1]
%e A323866   [1] [1]
%e A323866   [1] [2]
%e A323866   [3] [2]
%e A323866 .
%e A323866   [1]
%e A323866   [1]
%e A323866   [1]
%e A323866   [1]
%e A323866   [2]
%t A323866 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A323866 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A323866 ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
%t A323866 apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
%t A323866 neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
%t A323866 Table[If[n==0,1,Length[Union@@Table[Select[ptnmats[k],And[apermatQ[#],neckmatQ[#]]&],{k,Times@@Prime/@#&/@IntegerPartitions[n]}]]],{n,0,10}]
%o A323866 (GAP) List([0..30], A323866); # See A323861 for code; _Andrew Howroyd_, Aug 21 2019
%Y A323866 Cf. A000031, A000670, A000740, A001037, A008965, A059966, A060223, A185700.
%Y A323866 Cf. A323858, A323861, A323865, A323871.
%K A323866 nonn
%O A323866 0,4
%A A323866 _Gus Wiseman_, Feb 04 2019
%E A323866 Terms a(16) and beyond from _Andrew Howroyd_, Aug 21 2019