This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323867 #9 Aug 22 2019 23:11:14 %S A323867 1,1,1,5,11,33,57,157,303,683,1358,2974,5932,12560,25328,52400,106256, %T A323867 217875,441278,899955,1822703,3701401,7491173,15178253,30691135, %U A323867 62085846,125435689,253414326,511547323,1032427635,2082551931,4199956099,8466869525,17064777665 %N A323867 Number of aperiodic arrays of positive integers summing to n. %C A323867 The 1-dimensional case is A000740. %C A323867 An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct. %H A323867 Andrew Howroyd, <a href="/A323867/b323867.txt">Table of n, a(n) for n = 0..200</a> %e A323867 The a(5) = 33 arrays: %e A323867 5 14 23 32 41 113 122 131 212 221 311 1112 1121 1211 2111 %e A323867 . %e A323867 1 2 3 4 11 11 12 21 %e A323867 4 3 2 1 12 21 11 11 %e A323867 . %e A323867 1 1 1 2 2 3 %e A323867 1 2 3 1 2 1 %e A323867 3 2 1 2 1 1 %e A323867 . %e A323867 1 1 1 2 %e A323867 1 1 2 1 %e A323867 1 2 1 1 %e A323867 2 1 1 1 %t A323867 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A323867 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A323867 ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&]; %t A323867 apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]; %t A323867 Table[Length[Union@@Table[Select[ptnmats[k],apermatQ],{k,Times@@Prime/@#&/@IntegerPartitions[n]}]],{n,15}] %o A323867 (GAP) List([0..30], A323867); # See A323861 for code; _Andrew Howroyd_, Aug 21 2019 %Y A323867 Cf. A000670, A000740, A027375, A101509. %Y A323867 Cf. A323860, A323861, A323862, A323863, A323864, A323866, A323869. %K A323867 nonn %O A323867 0,4 %A A323867 _Gus Wiseman_, Feb 04 2019 %E A323867 Terms a(16) and beyond from _Andrew Howroyd_, Aug 21 2019