cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323867 Number of aperiodic arrays of positive integers summing to n.

This page as a plain text file.
%I A323867 #9 Aug 22 2019 23:11:14
%S A323867 1,1,1,5,11,33,57,157,303,683,1358,2974,5932,12560,25328,52400,106256,
%T A323867 217875,441278,899955,1822703,3701401,7491173,15178253,30691135,
%U A323867 62085846,125435689,253414326,511547323,1032427635,2082551931,4199956099,8466869525,17064777665
%N A323867 Number of aperiodic arrays of positive integers summing to n.
%C A323867 The 1-dimensional case is A000740.
%C A323867 An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.
%H A323867 Andrew Howroyd, <a href="/A323867/b323867.txt">Table of n, a(n) for n = 0..200</a>
%e A323867 The a(5) = 33 arrays:
%e A323867   5  14  23  32  41  113  122  131  212  221  311  1112  1121  1211  2111
%e A323867 .
%e A323867   1  2  3  4  11  11  12  21
%e A323867   4  3  2  1  12  21  11  11
%e A323867 .
%e A323867   1  1  1  2  2  3
%e A323867   1  2  3  1  2  1
%e A323867   3  2  1  2  1  1
%e A323867 .
%e A323867   1  1  1  2
%e A323867   1  1  2  1
%e A323867   1  2  1  1
%e A323867   2  1  1  1
%t A323867 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A323867 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A323867 ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
%t A323867 apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
%t A323867 Table[Length[Union@@Table[Select[ptnmats[k],apermatQ],{k,Times@@Prime/@#&/@IntegerPartitions[n]}]],{n,15}]
%o A323867 (GAP) List([0..30], A323867); # See A323861 for code; _Andrew Howroyd_, Aug 21 2019
%Y A323867 Cf. A000670, A000740, A027375, A101509.
%Y A323867 Cf. A323860, A323861, A323862, A323863, A323864, A323866, A323869.
%K A323867 nonn
%O A323867 0,4
%A A323867 _Gus Wiseman_, Feb 04 2019
%E A323867 Terms a(16) and beyond from _Andrew Howroyd_, Aug 21 2019