This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323877 #18 Feb 26 2019 05:03:00 %S A323877 0,0,0,1,10,125,2275,64673,3102204,272277040,46202044900, %T A323877 15442093276764,10171924771814520,13188852179018387144, %U A323877 33674263441006260931040,169522275849148918884400912,1685048703908907788901122512512,33116110237646373502366665503208064,1288337109916947580133035603563656989952,99320901948403913391024993536094346775110656 %N A323877 Number of labeled graphs on n nodes with four connected components. %D A323877 F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, section 1.2. %H A323877 Marko Riedel et al., <a href="https://math.stackexchange.com/questions/3094635/">Proof of recurrence relation.</a> %H A323877 Marko Riedel, <a href="/A323877/a323877.maple.txt">Maple implementation of memoized recurrence.</a> %F A323877 a(n) = A143543(n+1, 4) for n >= 1 and a(0) = 0. %F A323877 E.g.f.: log(Sum_{q>=0} 2^binomial(q, 2)*z^q/q!)^4/4!. %Y A323877 Cf. A143543, A323875, A323876. %K A323877 nonn %O A323877 1,5 %A A323877 _Marko Riedel_, Feb 05 2019