This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323905 #6 Feb 12 2019 22:36:57 %S A323905 0,0,0,1,0,2,0,4,2,4,0,7,0,8,4,11,0,8,0,13,8,16,0,18,4,32,8,25,0,14,0, %T A323905 26,16,64,8,21,0,128,32,32,0,26,0,49,14,256,0,41,8,16,64,97,0,22,16, %U A323905 60,128,512,0,35,0,1024,26,57,32,50,0,193,256,28,0,48,0,2048,16,385,16,98,0,71,22,4096,0,63,64,8192,512,116,0,36,32,769,1024 %N A323905 a(n) = A156552(n) - A048675(n). %H A323905 Antti Karttunen, <a href="/A323905/b323905.txt">Table of n, a(n) for n = 1..4096</a> %H A323905 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A323905 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A323905 a(n) = A156552(n) - A048675(n). %o A323905 (PARI) %o A323905 A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; \\ From A048675 %o A323905 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; %o A323905 A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); %o A323905 A323905(n) = (A156552(n) - A048675(n)); %Y A323905 Cf. A048675, A156552, A323906 (rgs-transform). %K A323905 nonn %O A323905 1,6 %A A323905 _Antti Karttunen_, Feb 12 2019