This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323908 #13 Mar 02 2023 19:10:38 %S A323908 0,1,3,2,1,0,6,7,3,2,0,1,2,3,5,4,1,0,6,7,0,1,3,2,6,7,1,0,7,6,12,13,3, %T A323908 2,0,1,2,3,5,4,0,1,3,2,1,0,6,7,2,3,5,4,3,2,0,1,5,4,2,3,4,5,15,14,1,0, %U A323908 6,7,0,1,3,2,6,7,1,0,7,6,12,13,0,1,3,2,1,0,6,7,3,2,0,1,2,3,5,4,6,7,1,0,7,6,12,13,1,0 %N A323908 Reversing binary representation of A004718, Per Nørgård's "infinity sequence". %C A323908 The composer Per Nørgård's name is also written in the OEIS as Per Noergaard. %H A323908 Antti Karttunen, <a href="/A323908/b323908.txt">Table of n, a(n) for n = 0..65536</a> %H A323908 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A323908 If A004718(n) <= 0, a(n) = A048724(-A004718(n)), otherwise a(n) = A065621(A004718(n)). %F A323908 For all n >= 1, A065620(a(n)) = A004718(n). %o A323908 (PARI) %o A323908 up_to = 65536; %o A323908 A004718list(up_to) = { my(v=vector(up_to)); v[1]=1; v[2]=-1; for(n=3, up_to, v[n] = if(n%2, 1+v[n>>1], -v[n/2])); (v); }; \\ After code in A004718. %o A323908 v004718 = A004718list(up_to); %o A323908 A004718(n) = if(!n,n,v004718[n]); %o A323908 A048724(n) = bitxor(n, n<<1); %o A323908 A065621(n) = bitxor(n-1,n+n-1); %o A323908 A323908(n) = if(A004718(n)<=0, A048724(-A004718(n)), A065621(A004718(n))); %o A323908 (Python) %o A323908 from itertools import groupby %o A323908 def A323908(n): %o A323908 c = 0 %o A323908 for k, g in groupby(bin(n)[2:]): %o A323908 c = c+len(list(g)) if k == '1' else (-c if len(list(g))&1 else c) %o A323908 return -c^(-c<<1) if c<=0 else c^(c&~-c)<<1 # _Chai Wah Wu_, Mar 02 2023 %Y A323908 Cf. A004718, A048724, A065620, A065621, A083866 (positions of zeros), A323907 (rgs-transform), A323909. %K A323908 nonn %O A323908 0,3 %A A323908 _Antti Karttunen_, Feb 09 2019