cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323942 Irregular triangle read by rows giving the total number of isomers (nonisomorphic systems) of unbranched k-4-catafusenes.

This page as a plain text file.
%I A323942 #23 May 27 2019 02:06:34
%S A323942 1,1,1,2,3,3,1,4,7,9,3,1,10,23,29,16,5,1,25,69,99,62,27,5,1,70,229,
%T A323942 351,275,132,39,7,1,196,731,1249,1121,643,221,55,7,1,574,2385,4437,
%U A323942 4584,2997,1278,367,72,9,1,1681,7657,15597,18012,13458,6678,2322,540,93,9,1
%N A323942 Irregular triangle read by rows giving the total number of isomers (nonisomorphic systems) of unbranched k-4-catafusenes.
%C A323942 From _Petros Hadjicostas_, May 26 2019: (Start)
%C A323942 Let I(r, k) be the total number of isomers (nonisomorphic systems) of unbranched k-4-catafusenes, which are generated from catafusenes by converting k of its r hexagons to tetragons. According to Cyvin et al. (1996), for r >= k, we have I(r, k) = 1/4 *(binomial(r, k) + (r - 2)! * (r^2 + (4 * k - 1) * r + 4 * k * (k - 2)) * 3^(r - k - 2)/(k! * (r - k)!) + (2 + (-1)^k - (-1)^r) * (binomial(floor(r/2), floor(k/2)) + 2 * binomial(floor(r/2) - 1, floor(k/2) - 1)) * 3^(floor(r/2) - floor(k/2) - 1)). See Eq. (48) on p. 503 in the paper.
%C A323942 Letting k = 0 - 10, we get the eleven columns of Table 2 on p. 501 of Cyvin et al. (1996). (We need r >= max(k, 2) because the number of hexagons r should be greater than or equal to the number of converted polygons k.)
%C A323942 (End)
%H A323942 S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, <a href="https://dx.doi.org/10.1016/0022-2860(95)09039-8">Isomer enumeration of some polygonal systems representing polycyclic conjugated hydrocarbons</a>, Journal of Molecular structure 376 (Issues 1-3) (1996), 495-505. See Table 2 on p. 501.
%F A323942 For the element T(n, k) in row n >= 2 and column k >= 0 (such that max(k, 2) <= n), we have T(n, k) = I(r = n, k), where I(r, k) is given above in the comments. - _Petros Hadjicostas_, May 26 2019
%e A323942 Triangle begins (rows start at n = 2 and columns at k = 0):
%e A323942      1,    1,     1;
%e A323942      2,    3,     3,     1;
%e A323942      4,    7,     9,     3,     1;
%e A323942     10,   23,    29,    16,     5,    1;
%e A323942     25,   69,    99,    62,    27,    5,    1;
%e A323942     70,  229,   351,   275,   132,   39,    7,   1;
%e A323942    196,  731,  1249,  1121,   643,  221,   55,   7,  1;
%e A323942    574, 2385,  4437,  4584,  2997, 1278,  367,  72,  9, 1;
%e A323942   1681, 7657, 15597, 18012, 13458, 6678, 2322, 540, 93, 9, 1;
%e A323942   ...
%Y A323942 Column k = 0 is A001998. Column k = 3 is A323941.
%K A323942 nonn,tabf
%O A323942 2,4
%A A323942 _N. J. A. Sloane_, Feb 09 2019
%E A323942 Name edited by _Petros Hadjicostas_, May 26 2019