This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323943 #18 Nov 08 2023 12:35:04 %S A323943 1,2,1,3,7,5,1,9,24,22,8,1,27,81,90,46,11,1,81,270,351,228,79,14,1, %T A323943 243,891,1323,1035,465,121,17,1,729,2916,4860,4428,2430,828,172,20,1, %U A323943 2187,9477,17496,18144,11718,4914,1344,232,23,1,6561,30618,61965,71928,53298,26460,8946,2040,301,26,1,19683 %N A323943 Trapezoidal matrix T(n,k) (n>=1, 1<=k<=n+2) read by rows, arising in enumeration of unbranched k-4-catafusenes. %C A323943 Rows sums are powers of 4. %H A323943 S. J. Cyvin, B. N. Cyvin and J. Brunvoll, <a href="https://dx.doi.org/10.1016/0022-2860(95)09039-8">Isomer enumeration of some polygonal systems representing polycyclic conjugated hydrocarbons</a>, Journal of molecular structure 376.1-3 (1996): 495-505. See Section 7.3. %F A323943 T(1,1)=T(1,3)=1, T(1,2)=2; thereafter T(n+1,k) = 3*T(n,k)+T(n,k-1). %e A323943 Matrix begins: %e A323943 1, 2, 1, %e A323943 3, 7, 5, 1, %e A323943 9, 24, 22, 8, 1, %e A323943 27, 81, 90, 46, 11, 1, %e A323943 81, 270, 351, 228, 79, 14, 1, %e A323943 ... %p A323943 A323943 := proc(n,k) %p A323943 option remember; %p A323943 if n = 1 then %p A323943 if k>=1 and k<=3 then %p A323943 op(k,[1,2,1]) ; %p A323943 else %p A323943 0; %p A323943 end if; %p A323943 else %p A323943 3*procname(n-1,k)+procname(n-1,k-1) ; %p A323943 end if; %p A323943 end proc: %p A323943 seq(seq(A323943(n,k),k=1..n+2),n=1..12) ; # _R. J. Mathar_, May 08 2019 %t A323943 T[n_, k_] := T[n, k] = If[n == 1, If[k >= 1 && k <= 3, {1, 2, 1}[[k]], 0], 3*T[n - 1, k] + T[n - 1, k - 1]]; %t A323943 Table[Table[T[n, k], {k, 1, n + 2}], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, Nov 08 2023, after _R. J. Mathar_ *) %Y A323943 Cf. A024462 (reversed rows). %Y A323943 Cf. A000244 (column 1), A038765 (column 2), A081892 (column 3) %K A323943 nonn,tabf,easy %O A323943 1,2 %A A323943 _N. J. A. Sloane_, Feb 09 2019