This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323952 #12 Jan 19 2023 16:36:48 %S A323952 1,2,3,3,7,4,4,13,9,5,5,21,16,11,6,6,31,25,19,13,7,7,43,36,29,22,15,8, %T A323952 8,57,49,41,33,25,17,9,9,73,64,55,46,37,28,19,10,10,91,81,71,61,51,41, %U A323952 31,21,11,11,111,100,89,78,67,56,45,34,23,12,12,133,121 %N A323952 Regular triangle read by rows where if k > 1 then T(n, k) is the number of connected subgraphs of an n-cycle with any number of vertices other than 2 through k - 1, n >= 1, 1 <= k <= n - 1. Otherwise T(n, 1) = n. %H A323952 Andrew Howroyd, <a href="/A323952/b323952.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50) %F A323952 T(n, 1) = n; T(n, k) = 1 + n * (n - k + 1). %e A323952 Triangle begins: %e A323952 1 %e A323952 2 3 %e A323952 3 7 4 %e A323952 4 13 9 5 %e A323952 5 21 16 11 6 %e A323952 6 31 25 19 13 7 %e A323952 7 43 36 29 22 15 8 %e A323952 8 57 49 41 33 25 17 9 %e A323952 9 73 64 55 46 37 28 19 10 %e A323952 10 91 81 71 61 51 41 31 21 11 %e A323952 11 111 100 89 78 67 56 45 34 23 12 %e A323952 12 133 121 109 97 85 73 61 49 37 25 13 %e A323952 Row 4 counts the following connected sets: %e A323952 {1} {1} {1} {1} %e A323952 {2} {2} {2} {2} %e A323952 {3} {3} {3} {3} %e A323952 {4} {4} {4} {4} %e A323952 {12} {123} {1234} %e A323952 {14} {124} %e A323952 {23} {134} %e A323952 {34} {234} %e A323952 {123} {1234} %e A323952 {124} %e A323952 {134} %e A323952 {234} %e A323952 {1234} %t A323952 anesw[n_,k_]:=Length[If[k==1,List/@Range[n],Union[Sort/@Select[Union[List/@Range[n],Join@@Table[Partition[Range[n],i,1,1],{i,k,n}]],UnsameQ@@#&&#!={}&]]]]; %t A323952 Table[anesw[n,k],{n,0,16},{k,n}] %o A323952 (PARI) T(n,k) = if(k==1, n, 1 + n * (n - k + 1)) \\ _Andrew Howroyd_, Jan 18 2023 %Y A323952 First column is A000027. Second column is A002061. Third column is A000290. Fourth column is A028387. %Y A323952 Cf. A000126, A000325, A306351, A323950, A323951, A323953, A323954, A323956. %K A323952 nonn,tabl %O A323952 1,2 %A A323952 _Gus Wiseman_, Feb 10 2019