cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323953 Regular triangle read by rows where T(n, k) is the number of ways to split an n-cycle into singletons and connected subsequences of sizes > k.

This page as a plain text file.
%I A323953 #8 Jan 19 2023 14:40:44
%S A323953 1,2,1,5,2,1,12,6,2,1,27,12,7,2,1,58,23,14,8,2,1,121,44,23,16,9,2,1,
%T A323953 248,82,38,26,18,10,2,1,503,149,65,38,29,20,11,2,1,1014,267,112,57,42,
%U A323953 32,22,12,2,1,2037,475,189,90,57,46,35,24,13,2,1
%N A323953 Regular triangle read by rows where T(n, k) is the number of ways to split an n-cycle into singletons and connected subsequences of sizes > k.
%H A323953 Andrew Howroyd, <a href="/A323953/b323953.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50)
%F A323953 T(n,k) = 2 - n + Sum_{i=1..floor(n/k)} n*binomial(n-i*k+i-1, 2*i-1)/i for 1 <= k < n. - _Andrew Howroyd_, Jan 19 2023
%e A323953 Triangle begins:
%e A323953      1
%e A323953      2    1
%e A323953      5    2    1
%e A323953     12    6    2    1
%e A323953     27   12    7    2    1
%e A323953     58   23   14    8    2    1
%e A323953    121   44   23   16    9    2    1
%e A323953    248   82   38   26   18   10    2    1
%e A323953    503  149   65   38   29   20   11    2    1
%e A323953   1014  267  112   57   42   32   22   12    2    1
%e A323953   2037  475  189   90   57   46   35   24   13    2    1
%e A323953   4084  841  312  146   80   62   50   38   26   14    2    1
%e A323953 Row 4 counts the following connected partitions:
%e A323953   {{1234}}        {{1234}}        {{1234}}        {{1}{2}{3}{4}}
%e A323953   {{1}{234}}      {{1}{234}}      {{1}{2}{3}{4}}
%e A323953   {{12}{34}}      {{123}{4}}
%e A323953   {{123}{4}}      {{124}{3}}
%e A323953   {{124}{3}}      {{134}{2}}
%e A323953   {{134}{2}}      {{1}{2}{3}{4}}
%e A323953   {{14}{23}}
%e A323953   {{1}{2}{34}}
%e A323953   {{1}{23}{4}}
%e A323953   {{12}{3}{4}}
%e A323953   {{14}{2}{3}}
%e A323953   {{1}{2}{3}{4}}
%t A323953 cyceds[n_,k_]:=Union[Sort/@Join@@Table[1+Mod[Range[i,j]-1,n],{i,n},{j,Prepend[Range[i+k,n+i-1],i]}]];
%t A323953 spsu[_,{}]:={{}};spsu[foo_,set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,___}];
%t A323953 Table[Length[spsu[cyceds[n,k],Range[n]]],{n,10},{k,n}]
%o A323953 (PARI) T(n,k) = {1 + if(k<n, 1-n) + sum(i=1, n\k, n*binomial(n-i*k+i-1, 2*i-1)/i)} \\ _Andrew Howroyd_, Jan 19 2023
%Y A323953 First column is A000325. Second column is A323950.
%Y A323953 Cf. A001610, A001680, A005251, A066982, A306351, A323951, A323952, A323954.
%K A323953 nonn,tabl
%O A323953 1,2
%A A323953 _Gus Wiseman_, Feb 10 2019