This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323953 #8 Jan 19 2023 14:40:44 %S A323953 1,2,1,5,2,1,12,6,2,1,27,12,7,2,1,58,23,14,8,2,1,121,44,23,16,9,2,1, %T A323953 248,82,38,26,18,10,2,1,503,149,65,38,29,20,11,2,1,1014,267,112,57,42, %U A323953 32,22,12,2,1,2037,475,189,90,57,46,35,24,13,2,1 %N A323953 Regular triangle read by rows where T(n, k) is the number of ways to split an n-cycle into singletons and connected subsequences of sizes > k. %H A323953 Andrew Howroyd, <a href="/A323953/b323953.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50) %F A323953 T(n,k) = 2 - n + Sum_{i=1..floor(n/k)} n*binomial(n-i*k+i-1, 2*i-1)/i for 1 <= k < n. - _Andrew Howroyd_, Jan 19 2023 %e A323953 Triangle begins: %e A323953 1 %e A323953 2 1 %e A323953 5 2 1 %e A323953 12 6 2 1 %e A323953 27 12 7 2 1 %e A323953 58 23 14 8 2 1 %e A323953 121 44 23 16 9 2 1 %e A323953 248 82 38 26 18 10 2 1 %e A323953 503 149 65 38 29 20 11 2 1 %e A323953 1014 267 112 57 42 32 22 12 2 1 %e A323953 2037 475 189 90 57 46 35 24 13 2 1 %e A323953 4084 841 312 146 80 62 50 38 26 14 2 1 %e A323953 Row 4 counts the following connected partitions: %e A323953 {{1234}} {{1234}} {{1234}} {{1}{2}{3}{4}} %e A323953 {{1}{234}} {{1}{234}} {{1}{2}{3}{4}} %e A323953 {{12}{34}} {{123}{4}} %e A323953 {{123}{4}} {{124}{3}} %e A323953 {{124}{3}} {{134}{2}} %e A323953 {{134}{2}} {{1}{2}{3}{4}} %e A323953 {{14}{23}} %e A323953 {{1}{2}{34}} %e A323953 {{1}{23}{4}} %e A323953 {{12}{3}{4}} %e A323953 {{14}{2}{3}} %e A323953 {{1}{2}{3}{4}} %t A323953 cyceds[n_,k_]:=Union[Sort/@Join@@Table[1+Mod[Range[i,j]-1,n],{i,n},{j,Prepend[Range[i+k,n+i-1],i]}]]; %t A323953 spsu[_,{}]:={{}};spsu[foo_,set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,___}]; %t A323953 Table[Length[spsu[cyceds[n,k],Range[n]]],{n,10},{k,n}] %o A323953 (PARI) T(n,k) = {1 + if(k<n, 1-n) + sum(i=1, n\k, n*binomial(n-i*k+i-1, 2*i-1)/i)} \\ _Andrew Howroyd_, Jan 19 2023 %Y A323953 First column is A000325. Second column is A323950. %Y A323953 Cf. A001610, A001680, A005251, A066982, A306351, A323951, A323952, A323954. %K A323953 nonn,tabl %O A323953 1,2 %A A323953 _Gus Wiseman_, Feb 10 2019