cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323954 Regular triangle read by rows where T(n, k) is the number of ways to split an n-cycle into connected subsequences of sizes > k, n >=1, 0 <= k < n.

This page as a plain text file.
%I A323954 #17 Jan 19 2023 12:23:14
%S A323954 1,2,1,5,1,1,12,3,1,1,27,6,1,1,1,58,12,4,1,1,1,121,22,8,1,1,1,1,248,
%T A323954 39,13,5,1,1,1,1,503,67,22,10,1,1,1,1,1,1014,113,36,16,6,1,1,1,1,1,
%U A323954 2037,188,56,23,12,1,1,1,1,1,1,4084,310,86,35,19,7,1,1,1,1,1,1
%N A323954 Regular triangle read by rows where T(n, k) is the number of ways to split an n-cycle into connected subsequences of sizes > k, n >=1, 0 <= k < n.
%H A323954 Andrew Howroyd, <a href="/A323954/b323954.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50)
%F A323954 T(n,k) = 1 - n + Sum_{i=1..floor(n/(k+1))} n*binomial(n-i*k-1, i-1)/i. - _Andrew Howroyd_, Jan 19 2023
%e A323954 Triangle begins:
%e A323954      1
%e A323954      2    1
%e A323954      5    1    1
%e A323954     12    3    1    1
%e A323954     27    6    1    1    1
%e A323954     58   12    4    1    1    1
%e A323954    121   22    8    1    1    1    1
%e A323954    248   39   13    5    1    1    1    1
%e A323954    503   67   22   10    1    1    1    1    1
%e A323954   1014  113   36   16    6    1    1    1    1    1
%e A323954   2037  188   56   23   12    1    1    1    1    1    1
%e A323954   4084  310   86   35   19    7    1    1    1    1    1    1
%e A323954 Row 4 counts the following partitions:
%e A323954   {{1234}}        {{1234}}    {{1234}}  {{1234}}
%e A323954   {{1}{234}}      {{12}{34}}
%e A323954   {{12}{34}}      {{14}{23}}
%e A323954   {{123}{4}}
%e A323954   {{124}{3}}
%e A323954   {{134}{2}}
%e A323954   {{14}{23}}
%e A323954   {{1}{2}{34}}
%e A323954   {{1}{23}{4}}
%e A323954   {{12}{3}{4}}
%e A323954   {{14}{2}{3}}
%e A323954   {{1}{2}{3}{4}}
%t A323954 cycedsprop[n_,k_]:=Union[Sort/@Join@@Table[1+Mod[Range[i,j]-1,n],{i,n},{j,i+k,n+i-1}]];
%t A323954 spsu[_,{}]:={{}};spsu[foo_,set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,___}];
%t A323954 Table[Length[spsu[cycedsprop[n,k],Range[n]]],{n,12},{k,0,n-1}]
%o A323954 (PARI) T(n,k) = 1 - n + sum(i=1, n\(k+1), n*binomial(n-i*k-1, i-1)/i) \\ _Andrew Howroyd_, Jan 19 2023
%Y A323954 Column k = 0 is A000325. Column k = 1 is A066982. Column k = 2 is A323951. Column k = 3 is A306351.
%Y A323954 Cf. A001610, A001680, A005251, A323950, A323951, A323952, A323953.
%K A323954 nonn,tabl
%O A323954 1,2
%A A323954 _Gus Wiseman_, Feb 10 2019