This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323954 #17 Jan 19 2023 12:23:14 %S A323954 1,2,1,5,1,1,12,3,1,1,27,6,1,1,1,58,12,4,1,1,1,121,22,8,1,1,1,1,248, %T A323954 39,13,5,1,1,1,1,503,67,22,10,1,1,1,1,1,1014,113,36,16,6,1,1,1,1,1, %U A323954 2037,188,56,23,12,1,1,1,1,1,1,4084,310,86,35,19,7,1,1,1,1,1,1 %N A323954 Regular triangle read by rows where T(n, k) is the number of ways to split an n-cycle into connected subsequences of sizes > k, n >=1, 0 <= k < n. %H A323954 Andrew Howroyd, <a href="/A323954/b323954.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50) %F A323954 T(n,k) = 1 - n + Sum_{i=1..floor(n/(k+1))} n*binomial(n-i*k-1, i-1)/i. - _Andrew Howroyd_, Jan 19 2023 %e A323954 Triangle begins: %e A323954 1 %e A323954 2 1 %e A323954 5 1 1 %e A323954 12 3 1 1 %e A323954 27 6 1 1 1 %e A323954 58 12 4 1 1 1 %e A323954 121 22 8 1 1 1 1 %e A323954 248 39 13 5 1 1 1 1 %e A323954 503 67 22 10 1 1 1 1 1 %e A323954 1014 113 36 16 6 1 1 1 1 1 %e A323954 2037 188 56 23 12 1 1 1 1 1 1 %e A323954 4084 310 86 35 19 7 1 1 1 1 1 1 %e A323954 Row 4 counts the following partitions: %e A323954 {{1234}} {{1234}} {{1234}} {{1234}} %e A323954 {{1}{234}} {{12}{34}} %e A323954 {{12}{34}} {{14}{23}} %e A323954 {{123}{4}} %e A323954 {{124}{3}} %e A323954 {{134}{2}} %e A323954 {{14}{23}} %e A323954 {{1}{2}{34}} %e A323954 {{1}{23}{4}} %e A323954 {{12}{3}{4}} %e A323954 {{14}{2}{3}} %e A323954 {{1}{2}{3}{4}} %t A323954 cycedsprop[n_,k_]:=Union[Sort/@Join@@Table[1+Mod[Range[i,j]-1,n],{i,n},{j,i+k,n+i-1}]]; %t A323954 spsu[_,{}]:={{}};spsu[foo_,set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,___}]; %t A323954 Table[Length[spsu[cycedsprop[n,k],Range[n]]],{n,12},{k,0,n-1}] %o A323954 (PARI) T(n,k) = 1 - n + sum(i=1, n\(k+1), n*binomial(n-i*k-1, i-1)/i) \\ _Andrew Howroyd_, Jan 19 2023 %Y A323954 Column k = 0 is A000325. Column k = 1 is A066982. Column k = 2 is A323951. Column k = 3 is A306351. %Y A323954 Cf. A001610, A001680, A005251, A323950, A323951, A323952, A323953. %K A323954 nonn,tabl %O A323954 1,2 %A A323954 _Gus Wiseman_, Feb 10 2019