cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323955 Regular triangle read by rows where T(n, k) is the number of set partitions of {1, ..., n} with no block containing k cyclically successive vertices, n >= 1, 2 <= k <= n + 1.

This page as a plain text file.
%I A323955 #5 Feb 10 2019 23:02:10
%S A323955 1,1,2,1,4,5,4,10,14,15,11,36,46,51,52,41,145,184,196,202,203,162,631,
%T A323955 806,855,869,876,877,715,3015,3847,4059,4115,4131,4139,4140,3425,
%U A323955 15563,19805,20813,21056,21119,21137,21146,21147,17722,86144,109339,114469
%N A323955 Regular triangle read by rows where T(n, k) is the number of set partitions of {1, ..., n} with no block containing k cyclically successive vertices, n >= 1, 2 <= k <= n + 1.
%C A323955 Cyclically successive means 1 is a successor of n.
%e A323955 Triangle begins:
%e A323955     1
%e A323955     1    2
%e A323955     1    4    5
%e A323955     4   10   14   15
%e A323955    11   36   46   51   52
%e A323955    41  145  184  196  202  203
%e A323955   162  631  806  855  869  876  877
%e A323955   715 3015 3847 4059 4115 4131 4139 4140
%e A323955 Row 4 counts the following partitions:
%e A323955   {{13}{24}}      {{12}{34}}      {{1}{234}}      {{1234}}
%e A323955   {{1}{24}{3}}    {{13}{24}}      {{12}{34}}      {{1}{234}}
%e A323955   {{13}{2}{4}}    {{14}{23}}      {{123}{4}}      {{12}{34}}
%e A323955   {{1}{2}{3}{4}}  {{1}{2}{34}}    {{124}{3}}      {{123}{4}}
%e A323955                   {{1}{23}{4}}    {{13}{24}}      {{124}{3}}
%e A323955                   {{12}{3}{4}}    {{134}{2}}      {{13}{24}}
%e A323955                   {{1}{24}{3}}    {{14}{23}}      {{134}{2}}
%e A323955                   {{13}{2}{4}}    {{1}{2}{34}}    {{14}{23}}
%e A323955                   {{14}{2}{3}}    {{1}{23}{4}}    {{1}{2}{34}}
%e A323955                   {{1}{2}{3}{4}}  {{12}{3}{4}}    {{1}{23}{4}}
%e A323955                                   {{1}{24}{3}}    {{12}{3}{4}}
%e A323955                                   {{13}{2}{4}}    {{1}{24}{3}}
%e A323955                                   {{14}{2}{3}}    {{13}{2}{4}}
%e A323955                                   {{1}{2}{3}{4}}  {{14}{2}{3}}
%e A323955                                                   {{1}{2}{3}{4}}
%t A323955 spsu[_,{}]:={{}};spsu[foo_,set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,___}];
%t A323955 Table[Length[spsu[Select[Subsets[Range[n]],Select[Partition[Range[n],k,1,1],Function[ed,UnsameQ@@ed&&Complement[ed,#]=={}]]=={}&],Range[n]]],{n,7},{k,2,n+1}]
%Y A323955 First column (k = 2) is A000296. Second column (k = 3) is A323949. Rightmost terms are A000110. Second to rightmost terms are A058692.
%Y A323955 Cf. A000126, A000325, A001610, A001644, A169985, A306351, A306357, A323950, A323954.
%K A323955 nonn,tabl
%O A323955 1,3
%A A323955 _Gus Wiseman_, Feb 10 2019