cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324009 The number of convex polyominoes whose smallest bounding rectangle has size w*h (w > 0, h > 0). The table is read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 25, 68, 25, 1, 1, 41, 222, 222, 41, 1, 1, 61, 555, 1110, 555, 61, 1, 1, 85, 1171, 3951, 3951, 1171, 85, 1, 1, 113, 2198, 11263, 19010, 11263, 2198, 113, 1, 1, 145, 3788, 27468, 70438, 70438, 27468, 3788, 145, 1
Offset: 1

Views

Author

Günter Rote, Feb 12 2019

Keywords

Examples

			For w=3 and h=2, the a(3,2)=13 polyominoes spanning a 3 X 2 rectangle are
   XXX   X   XX   X    XX
   XXX  XXX   XX  XXX  XXX
plus all different horizontal and vertical reflections (1+2+2+4+4=13).
Table begins
1  1   1    1   1  1 1 ...
1  5  13   25  41 61 ...
1 13  68  222 555 ...
1 25 222 1110 ...
1 41 555 ...
1 61 ...
1 ...
		

Crossrefs

A093118 contains the same data in a different arrangement but without the entries for w=1 and for h=1.
Row sums are A005436.

Programs

  • Mathematica
    Table[Binomial[2 # + 2 h - 4, 2 # - 2] + ((2 # + 2 h - 5)/2) Binomial[2 # + 2 h - 6, 2 # - 3] - 2 (# + h - 3) Binomial[# + h - 2, # - 1] Binomial[# + h - 4, # - 2] &[w - h + 1], {w, 10}, {h, w}] // Flatten (* Michael De Vlieger, Apr 15 2019 *)
  • Sage
    def a(w,h):
         s = w+h # half the perimeter
         return ( binomial(2*s-4,2*w-2) + binomial(2*s-6,2*w-3)*(s-5/2)
          - 2*(s-3)*binomial(s-2,w-1)*binomial(s-4,w-2) )

Formula

a(w, h) = binomial(2w+2h-4, 2w-2) + ((2w+2h-5)/2)*binomial(2w+2h-6, 2w-3) - 2(w+h-3)*binomial(w+h-2, w-1)*binomial(w+h-4, w-2), for w > 0, h > 0.
a(w, h) = A093118(w-1, h-1).