cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324010 The sum of squares of the number of common points in all pairs of lattice paths from (0,0) to (x,y), for x >= 0, y >= 0 (the unnormalized second moment). The table is read by antidiagonals.

This page as a plain text file.
%I A324010 #35 Jul 31 2019 21:04:58
%S A324010 1,4,4,9,26,9,16,92,92,16,25,240,474,240,25,36,520,1704,1704,520,36,
%T A324010 49,994,4879,8084,4879,994,49,64,1736,11928,29560,29560,11928,1736,64,
%U A324010 81,2832,25956,89928,134450,89928,25956,2832,81,100,4380,51648,238440,498140,498140,238440,51648,4380,100
%N A324010 The sum of squares of the number of common points in all pairs of lattice paths from (0,0) to (x,y), for x >= 0, y >= 0 (the unnormalized second moment). The table is read by antidiagonals.
%H A324010 Kevin Buchin, Kenny Chiu, Stefan Felsner, Günter Rote, André Schulz, <a href="http://arxiv.org/abs/1903.01095">The number of convex polyominoes with given height and width</a>, arXiv:1903.01095 [math.CO], 2019.
%F A324010 A(x,y) = (x+y+1) * binomial(x+y+2,x+1) * binomial(x+y,x) - binomial(2*x+2*y+2,2*x+1)/2.
%e A324010 There are two lattice paths from (0,0) to (x,y)=(1,1): P1=(0,0),(1,0),(1,1) and P2=(0,0),(0,1),(1,1), and hence 4 pairs of lattice paths: (P1,P1),(P1,P2),(P2,P1),(P2,P2). The number of common points is 3,2,2,3, respectively, and the sum of the squares of these numbers is 9+4+4+9 = 26 = a(1,1).
%e A324010 Table begins
%e A324010    1   4    9    16     25 ...
%e A324010    4  26   92   240    520 ...
%e A324010    9  92  474  1704   4879 ...
%e A324010   16 240 1704  8084  29560 ...
%e A324010   25 520 4879 29560 134450 ...
%e A324010   ...
%t A324010 Table[(# + y + 1) Binomial[# + y + 2, # + 1] Binomial[# + y, #] - Binomial[2 # + 2 y + 2, 2 # + 1]/2 &[x - y], {x, 0, 9}, {y, 0, x}] // Flatten (* _Michael De Vlieger_, Apr 15 2019 *)
%o A324010 (PARI) a(x,y) = (x+y+1)*binomial(x+y+2,x+1)*binomial(x+y,x)-binomial(2*x+2*y+2,2*x+1)/2;
%o A324010 matrix(10, 10, n, k, a(n-1,k-1)) \\ _Michel Marcus_, Apr 08 2019
%Y A324010 See A306687 for the lower triangular half of the same data, read by rows.
%Y A324010 See A091044 for the unnormalized first moment (the sum of the number of common points without squaring).
%K A324010 nonn,easy,tabl
%O A324010 0,2
%A A324010 _Günter Rote_, Feb 12 2019