cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324011 Number of set partitions of {1, ..., n} with no singletons or cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).

This page as a plain text file.
%I A324011 #11 Feb 13 2019 03:30:32
%S A324011 1,0,0,0,1,0,5,14,66,307,1554,8415,48530,296582,1913561,12988776,
%T A324011 92467629,688528288,5349409512,43270425827,363680219762,3170394634443,
%U A324011 28619600156344,267129951788160,2574517930001445,25587989366964056,261961602231869825
%N A324011 Number of set partitions of {1, ..., n} with no singletons or cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).
%C A324011 These set partitions are fixed points under Callan's bijection phi on set partitions.
%H A324011 David Callan, <a href="https://arxiv.org/abs/math/0508052">On conjugates for set partitions and integer compositions</a>, arXiv:math/0508052 [math.CO], 2005.
%e A324011 The a(4) = 1, a(6) = 5, and a(7) = 14 set partitions:
%e A324011   {{13}{24}}  {{135}{246}}    {{13}{246}{57}}
%e A324011               {{13}{25}{46}}  {{13}{257}{46}}
%e A324011               {{14}{25}{36}}  {{135}{26}{47}}
%e A324011               {{14}{26}{35}}  {{135}{27}{46}}
%e A324011               {{15}{24}{36}}  {{136}{24}{57}}
%e A324011                               {{136}{25}{47}}
%e A324011                               {{14}{257}{36}}
%e A324011                               {{14}{26}{357}}
%e A324011                               {{146}{25}{37}}
%e A324011                               {{146}{27}{35}}
%e A324011                               {{15}{246}{37}}
%e A324011                               {{15}{247}{36}}
%e A324011                               {{16}{24}{357}}
%e A324011                               {{16}{247}{35}}
%t A324011 Table[Select[sps[Range[n]],And[Count[#,{_}]==0,Total[If[First[#]==1&&Last[#]==n,1,0]+Count[Subtract@@@Partition[#,2,1],-1]&/@#]==0]&]//Length,{n,0,10}]
%Y A324011 Cf. A000110, A000126, A000296 (singletons allowed, or adjacencies allowed), A001610, A124323, A169985, A261139, A324012, A324014, A324015.
%K A324011 nonn
%O A324011 0,7
%A A324011 _Gus Wiseman_, Feb 12 2019
%E A324011 a(11)-a(26) from _Alois P. Heinz_, Feb 12 2019