This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324012 #13 Feb 19 2019 00:36:06 %S A324012 1,0,0,0,1,0,3,2,14,11,80,85,510 %N A324012 Number of self-complementary set partitions of {1, ..., n} with no singletons or cyclical adjacencies (successive elements in the same block, where 1 is a successor of n). %C A324012 The complement of a set partition pi of {1, ..., n} is defined as n + 1 - pi (elementwise) on page 3 of Callan. For example, the complement of {{1,5},{2},{3,6},{4}} is {{1,4},{2,6},{3},{5}}. This sequence counts certain self-conjugate set partitions, i.e., fixed points under Callan's conjugation operation. %H A324012 David Callan, <a href="https://arxiv.org/abs/math/0508052">On conjugates for set partitions and integer compositions</a>, arXiv:math/0508052 [math.CO], 2005. %e A324012 The a(6) = 3 through a(9) = 11 self-complementary set partitions with no singletons or cyclical adjacencies: %e A324012 {{135}{246}} {{13}{246}{57}} {{1357}{2468}} {{136}{258}{479}} %e A324012 {{13}{25}{46}} {{15}{246}{37}} {{135}{27}{468}} {{147}{258}{369}} %e A324012 {{14}{25}{36}} {{146}{27}{358}} {{148}{269}{357}} %e A324012 {{147}{258}{36}} {{168}{249}{357}} %e A324012 {{157}{248}{36}} {{13}{258}{46}{79}} %e A324012 {{13}{24}{57}{68}} {{14}{258}{37}{69}} %e A324012 {{13}{25}{47}{68}} {{14}{28}{357}{69}} %e A324012 {{14}{26}{37}{58}} {{16}{258}{37}{49}} %e A324012 {{14}{27}{36}{58}} {{16}{28}{357}{49}} %e A324012 {{15}{26}{37}{48}} {{17}{258}{39}{46}} %e A324012 {{15}{27}{36}{48}} {{18}{29}{357}{46}} %e A324012 {{16}{24}{38}{57}} %e A324012 {{16}{25}{38}{47}} %e A324012 {{17}{28}{35}{46}} %t A324012 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A324012 cmp[stn_]:=Union[Sort[Max@@Join@@stn+1-#]&/@stn]; %t A324012 Table[Select[sps[Range[n]],And[cmp[#]==Sort[#],Count[#,{_}]==0,Total[If[First[#]==1&&Last[#]==n,1,0]+Count[Subtract@@@Partition[#,2,1],-1]&/@#]==0]&]//Length,{n,0,10}] %Y A324012 Cf. A000110, A000126, A000296, A001610, A080107, A169985, A261139, A306417 (all self-conjugate set partitions), A324011 (self-complementarity not required), A324013 (adjacencies allowed), A324014 (singletons allowed), A324015. %K A324012 nonn,more %O A324012 0,7 %A A324012 _Gus Wiseman_, Feb 12 2019