This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324013 #14 Feb 16 2022 23:22:27 %S A324013 1,0,1,1,4,3,15,16,75,89,428,571,2781,4060,20093,31697,159340,268791, %T A324013 1372163,2455804,12725447,24012697,126238060,249880687,1332071241, %U A324013 2754348360,14881206473,32029000641,175297058228,391548016475,2169832010759 %N A324013 Number of self-complementary set partitions of {1, ..., n} with no singletons. %C A324013 The complement of a set partition pi of {1, ..., n} is defined as n + 1 - pi (elementwise) on page 3 of Callan. For example, the complement of {{1,5},{2},{3,6},{4}} is {{1,4},{2,6},{3},{5}}. %H A324013 Andrew Howroyd, <a href="/A324013/b324013.txt">Table of n, a(n) for n = 0..500</a> %H A324013 David Callan, <a href="https://arxiv.org/abs/math/0508052">On conjugates for set partitions and integer compositions</a>, arXiv:math/0508052 [math.CO], 2005. %F A324013 From _Andrew Howroyd_, Feb 16 2022: (Start) %F A324013 a(2*n) = A086365(n-1) for n > 0. %F A324013 a(2*n) = n!*[x^n] exp((exp(2*x) - 3)/2 - x + exp(x)); %F A324013 a(2*n+1) = n!*[x^n] (exp(x) - 1)*exp((exp(2*x) - 3)/2 - x + exp(x)). %F A324013 (End) %e A324013 The a(3) = 1 through a(6) = 15 self-complementary set partitions with no singletons: %e A324013 {{123}} {{1234}} {{12345}} {{123456}} %e A324013 {{12}{34}} {{135}{24}} {{123}{456}} %e A324013 {{13}{24}} {{15}{234}} {{124}{356}} %e A324013 {{14}{23}} {{1256}{34}} %e A324013 {{1346}{25}} %e A324013 {{135}{246}} %e A324013 {{145}{236}} %e A324013 {{16}{2345}} %e A324013 {{12}{34}{56}} %e A324013 {{13}{25}{46}} %e A324013 {{14}{25}{36}} %e A324013 {{15}{26}{34}} %e A324013 {{16}{23}{45}} %e A324013 {{16}{24}{35}} %e A324013 {{16}{25}{34}} %t A324013 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A324013 cmp[stn_]:=Union[Sort[Max@@Join@@stn+1-#]&/@stn]; %t A324013 Table[Select[sps[Range[n]],And[cmp[#]==Sort[#],Count[#,{_}]==0]&]//Length,{n,0,10}] %o A324013 (PARI) seq(n)={my(x=x+O(x*x^(n\2)), p=exp((exp(2*x)-3)/2-x+exp(x)), q=(exp(x)-1)*p); vector(n+1, n, my(c=(n-1)\2); c!*polcoef(if(n%2, p, q), c))} \\ _Andrew Howroyd_, Feb 16 2022 %Y A324013 Cf. A000110, A000296, A080107 (self-complementary), A086365, A124323, A324012 (self-conjugate). %K A324013 nonn %O A324013 0,5 %A A324013 _Gus Wiseman_, Feb 12 2019 %E A324013 Terms a(13) and beyond from _Andrew Howroyd_, Feb 16 2022