cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324017 Square array A(m,n) (m>=1, n>=1) read by antidiagonals: A(m,n) = (2*n - 1)^^m mod (2*n)^m (see Comments for definition of ^^).

This page as a plain text file.
%I A324017 #91 Feb 16 2025 08:33:57
%S A324017 1,3,1,5,11,1,7,29,59,1,9,55,29,59,1,11,89,119,1109,827,1,13,131,289,
%T A324017 3703,3701,2875,1,15,181,563,5289,7799,34805,15163,1,17,239,965,16115,
%U A324017 45289,138871,128117,31547,1,19,305,1519,25661,57587,745289,1711735,687989,97083,1
%N A324017 Square array A(m,n) (m>=1, n>=1) read by antidiagonals: A(m,n) = (2*n - 1)^^m mod (2*n)^m (see Comments for definition of ^^).
%C A324017 Tetration (x^^n) is defined as x^^0 = 1 and x^^n = x^(x^^(n - 1)). Another way to put this is that x^^n = x^x^x^...x with n x's.
%C A324017 Conjecture: For any three integers (greater than 1), m, n, and k, such that (2*n - 1)^^m == k (mod (2*n)^m), (2*n - 1)^k == k (mod (2*n)^m). For example, 5^^2 == 29 (mod 6^2) and 5^29 == 29 (mod 6^2).
%C A324017 Conjecture: For n > 1 and m >= 2, floor(((2*n - 1)^^m)/(2*n)) ==  2*(n - 1) (mod 2*n). For example, floor((13^^3)/14) == 12 (mod 14) and floor((15^^4)/16) == 14 (mod 16).
%C A324017 Conjecture: For m > 1, where (2*n - 1)^^m == j (mod (2*n)^(m + 1)), A(m + 1,n) = j. For example, A(6,3) = 563 and A(6,4) = 16115; 11^^3 == 563 (mod 12^3) and 11^^3 == 16115 (mod 12^4).
%H A324017 Charles W. Trigg, <a href="https://cms.math.ca/crux/backfile/Crux_v7n06_Jun.pdf">Problem 559</a>, Crux Mathematicorum, page 192, Vol. 7, Jun. 81.
%H A324017 Eric Weisstein's World of Mathematics,<a href="https://mathworld.wolfram.com/PowerTower.html">Power Tower</a>.
%H A324017 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetration">Tetration</a>.
%e A324017 Square array A(m,n) begins:
%e A324017   \n  1     2      3       4        5          6         7          8 ...
%e A324017   m\
%e A324017    1| 1     3      5       7        9         11        13         15 ...
%e A324017    2| 1    11     29      55       89        131       181        239 ...
%e A324017    3| 1    59     29     119      289        563       965       1519 ...
%e A324017    4| 1    59   1109    3703     5289      16115     25661      13807 ...
%e A324017    5| 1   827   3701    7799    45289      57587    332989     669167 ...
%e A324017    6| 1  2875  34805  138871   745289    1799411   4635581     669167 ...
%e A324017    7| 1 15163 128117 1711735  2745289   25687283  49812797   67778031 ...
%e A324017    8| 1 31547 687989 8003191 92745289  419837171 155226301 3557438959 ...
%e A324017 .
%e A324017 Examples of columns in this array:
%e A324017 A(m,1) = A000012(m - 1).
%e A324017 A(m,5) = A306686(m) with a note about how this sequence repeats terms rather than skipping.
%e A324017 Examples of rows in this array:
%e A324017 A(1,n) = A005408(n - 1).
%e A324017 A(2,n) = A082108(n - 1).
%o A324017 (PARI) tetrmod(b,n,m)=my(t=b);i=0;while(i<=n, i++&&if(i>1, t=lift(Mod(b,m)^t), t)); t
%o A324017 tetrmatrix(lim)= matrix(lim,lim,x,y,tetrmod((2*y)-1,x,(2*y)^x))
%Y A324017 Cf. A000012, A005408, A082108, A306686.
%K A324017 nonn,tabl
%O A324017 1,2
%A A324017 _Davis Smith_, Mar 28 2019