This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324024 #14 Sep 07 2019 18:04:57 %S A324024 0,4,9,109,109,1359,10734,41984,120109,1291984,3245109,13010734, %T A324024 208323234,452463859,1673166984,13880198234,44397776359,349573557609, %U A324024 1875452463859,9504846995109,9504846995109,104872278635734,581709436838859,7734266809885734,7734266809885734 %N A324024 One of the two successive approximations up to 5^n for 5-adic integer sqrt(6). This is the 4 (mod 5) case (except for n = 0). %C A324024 For n > 0, a(n) is the unique solution to x^2 == 6 (mod 5^n) in the range [0, 5^n - 1] and congruent to 1 modulo 5. %C A324024 A324023 is the approximation (congruent to 4 mod 5) of another square root of 6 over the 5-adic field. %H A324024 Wikipedia, <a href="https://en.wikipedia.org/wiki/P-adic_number">p-adic number</a> %F A324024 For n > 0, a(n) = 5^n - A324023(n). %F A324024 a(n) = A048898(n)*A324027(n) mod 5^n = A048899(n)*A324028(n) mod 5^n. %e A324024 9^2 = 81 = 3*5^2 + 6; %e A324024 109^2 = 11881 = 95*5^3 + 6 = 19*5^4 + 6; %e A324024 1359^2 = 1846881 = 591*5^5 + 6. %o A324024 (PARI) a(n) = truncate(-sqrt(6+O(5^n))) %Y A324024 Cf. A048898, A048899, A324025, A324026. %Y A324024 Approximations of 5-adic square roots: %Y A324024 A324027, A324028 (sqrt(-6)); %Y A324024 A268922, A269590 (sqrt(-4)); %Y A324024 A048898, A048899 (sqrt(-1)); %Y A324024 A324023, this sequence (sqrt(6)). %K A324024 nonn %O A324024 0,2 %A A324024 _Jianing Song_, Sep 07 2019