This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324029 #18 Mar 11 2023 07:56:09 %S A324029 2,2,1,1,2,3,2,4,3,1,0,0,1,3,1,3,4,2,3,2,3,2,4,4,2,3,3,0,1,1,3,1,1,1, %T A324029 3,1,2,3,2,3,4,1,0,2,4,4,3,4,0,3,2,0,2,0,2,0,3,2,0,0,4,2,4,4,0,4,4,4, %U A324029 3,1,4,2,2,4,2,0,0,0,3,0,4,3,2,4,3,3,4,0 %N A324029 Digits of one of the two 5-adic integers sqrt(-6) that is related to A324027. %C A324029 This square root of -6 in the 5-adic field ends with digit 2. The other, A324030, ends with digit 3. %H A324029 Wikipedia, <a href="https://en.wikipedia.org/wiki/P-adic_number">p-adic number</a> %F A324029 a(n) = (A324027(n+1) - A324027(n))/5^n. %F A324029 For n > 0, a(n) = 4 - A324030(n). %F A324029 Equals A210850*A324026 = A210851*A324025, where each A-number represents a 5-adic number. %e A324029 The solution to x^2 == -6 (mod 5^4) such that x == 2 (mod 5) is x == 162 (mod 5^4), and 162 is written as 1122 in quinary, so the first four terms are 2, 2, 1 and 1. %o A324029 (PARI) a(n) = truncate(sqrt(-6+O(5^(n+1))))\5^n %Y A324029 Cf. A324027, A324028. %Y A324029 Digits of 5-adic square roots: %Y A324029 this sequence, A324030 (sqrt(-6)); %Y A324029 A269591, A269592 (sqrt(-4)); %Y A324029 A210850, A210851 (sqrt(-1)); %Y A324029 A324025, A324026 (sqrt(6)). %K A324029 nonn,base %O A324029 0,1 %A A324029 _Jianing Song_, Sep 07 2019