A324038 Irregular triangle T read by rows: Row n gives the vertex labels of level n of the tree related to the modified reduced Collatz map A324036.
1, 5, 3, 21, 13, 85, 17, 53, 113, 341, 11, 69, 35, 213, 75, 453, 227, 1365, 7, 45, 277, 23, 141, 853, 301, 1813, 151, 909, 5461, 9, 29, 181, 369, 1109, 15, 93, 565, 1137, 3413, 401, 1205, 2417, 7253, 201, 605, 3637, 7281, 21845, 37, 19, 117, 241, 725, 1477, 739, 4437, 61, 373, 753, 2261, 4549, 2275, 13653, 267, 1605, 803, 4821, 1611, 9669, 4835, 29013, 805, 403, 2421, 4849, 14549, 29125, 14563, 87381
Offset: 0
Examples
The irregular triangle T begins (the brackets combine pairs coming from out-degree 2 vertices of the preceding level): n/k 1 2 3 4 5 6 7 8 9 10 11 ... ------------------------------------------------------------- 0: 1 1: 5 2: (3 21) 3: 13 85 4: (17 53) (113 341) 5: (11 69) (35 213) (75 453) (227 1365) 6: ( 7 45) 277 (23 141) 853 301 1813 (151 909) 5461 ... Row n = 7: (9 29) 181 (369 1109) (15 93) 565 (1137 3413) (401 1205) (2417 7253) (201 605) 3637 (7281 21845); Row n = 8: 37 (19 117) (241 725) 1477 (739 4437) 61 373 (753 2261) 4549 (2275 13653) (267 1605) (803 4821) (1611 9669) (4835 29013) 805 (403 2421) (4849 14549) 29125 (14563 87381). ... The successors of T(1,1) = 5 == 5 (mod 6) are (2*5 - 1)/3 = 3 and 4*5 + 1 = 21. The successor of T(2, 1) = 3 == 3 (mod 6) is 4*3 + 1 = 13. The successors of T(3, 1) = 13 == 1 (mod 6) are (4*13 - 1)/3 = 17 and 4*13 + 1 = 53.
Links
- Wolfdieter Lang, Collatz Trees from Vaillant-Delarue Maps
- Nicolas Vaillant and Philippe Delarue, The hidden face of the 3x+1 problem. Part I: Intrinsic algorithm, April 26 2019.
Formula
Recurrence: CfsTree(n), the list of vertex labels {T(n, k), for k = 1..A324038(n)} of level n, is obtained from: CfsTree(0) = {1}, CfsTree(1) = {5}, and for n >= 2, CfsTree(n) = {2*m + 1 >= 1: fs(2*m+1) = T(n-1, k)), for k = 1..A324038(n-1)}, with fs from A324036.
Explicit form for the successor(s) of T(n, k) on level n+1, for n >= 1:
a vertex label with T(n, k) == 3 (mod 6) produces the label 4*T(n, k) + 1 on level n+1; label T(n, k) == 1 (mod 6) produces the two labels (4*T(n, k) - 1)/3 and 4*T(n, k) + 1; label T(n, k) == 5 (mod 6) produces the two labels (2*T(n, k) - 1)/3 and 4*T(n, k) + 1.
Comments