This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324043 #49 Aug 16 2021 14:47:17 %S A324043 0,2,14,34,90,154,288,462,742,1038,1512,2074,2904,3774,4892,6154,7864, %T A324043 9662,12022,14638,17786,20998,25024,29402,34672,40038,46310,53038, %U A324043 61090,69454,79344,89890,101792,113854,127476,141866,158428,175182,193760,213274,235444,258182,283858,310750,339986 %N A324043 Number of quadrilateral regions into which a figure made up of a row of n adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles. %C A324043 A row of n adjacent congruent rectangles can only be divided into triangles (cf. A324042) or quadrilaterals when drawing diagonals. Proof is given in Alekseyev et al. (2015) under the transformation described in A306302. %H A324043 Chai Wah Wu, <a href="/A324043/b324043.txt">Table of n, a(n) for n = 1..10000</a> %H A324043 M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh, <a href="https://doi.org/10.1137/140978090">On the minimal teaching sets of two-dimensional threshold functions</a>. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. %H A324043 Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, <a href="http://neilsloane.com/doc/rose_5.pdf">Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids</a>, (2021). Also arXiv:2009.07918. %H A324043 Robert Israel, <a href="/A324043/a324043.txt">Maple program</a>. %H A324043 Jinyuan Wang, <a href="/A324043/a324043.png">Illustration for n = 1, 2, 3, 4, 5</a>. %F A324043 a(n) = A115005(n+1) - A177719(n+1) - n - 1 = Sum_{i,j=1..n; gcd(i,j)=1} (n+1-i)*(n+1-j) - 2*Sum_{i,j=1..n; gcd(i,j)=2} (n+1-i)*(n+1-j) - n^2. - _Max Alekseyev_, Jul 08 2019 %F A324043 a(n) = A306302(n) - A324042(n). %F A324043 For n>1, a(n) = -2(n-1)^2 + Sum_{i=2..floor(n/2)} (n+1-i)*(7i-2n-2)*phi(i) + Sum_{i=floor(n/2)+1..n} (n+1-i)*(2n+2-i)*phi(i). - _Chai Wah Wu_, Aug 16 2021 %e A324043 For k adjacent congruent rectangles, the number of quadrilateral regions in the j-th rectangle is: %e A324043 k\j| 1 2 3 4 5 6 7 ... %e A324043 ---+-------------------------------- %e A324043 1 | 0, 0, 0, 0, 0, 0, 0, ... %e A324043 2 | 1, 1, 0, 0, 0, 0, 0, ... %e A324043 3 | 3, 8, 3, 0, 0, 0, 0, ... %e A324043 4 | 5, 12, 12, 5, 0, 0, 0, ... %e A324043 5 | 7, 22, 32, 22, 7, 0, 0, ... %e A324043 6 | 9, 28, 40, 40, 28, 9, 0, ... %e A324043 7 | 11, 38, 58, 74, 58, 38, 11, ... %e A324043 ... %e A324043 a(4) = 5 + 12 + 12 + 5 = 34. %p A324043 See Robert Israel link. %p A324043 There are also Maple programs for both A306302 and A324042. Then a := n -> A306302(n) - A324042(n); # _N. J. A. Sloane_, Mar 04 2020 %t A324043 Table[Sum[Sum[(Boole[GCD[i, j] == 1] - 2 * Boole[GCD[i, j] == 2]) * (n + 1 - i) * (n + 1 - j), {j, 1, n}], {i, 1, n}] - n^2, {n, 1, 45}] (* _Joshua Oliver_, Feb 05 2020 *) %o A324043 (PARI) { A324043(n) = sum(i=1, n, sum(j=1, n, ( (gcd(i, j)==1) - 2*(gcd(i,j)==2) ) * (n+1-i) * (n+1-j) )) - n^2; } \\ _Max Alekseyev_, Jul 08 2019 %o A324043 (Python) %o A324043 from sympy import totient %o A324043 def A324043(n): return 0 if n==1 else -2*(n-1)**2 + sum(totient(i)*(n+1-i)*(7*i-2*n-2) for i in range(2,n//2+1)) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1,n+1)) # _Chai Wah Wu_, Aug 16 2021 %Y A324043 Cf. A007678, A108914, A114043, A115005, A177719, A306302, A324042, A333286, A333287, A333288. %K A324043 nonn %O A324043 1,2 %A A324043 _Jinyuan Wang_, May 01 2019 %E A324043 a(8)-a(23) from _Robert Israel_, Jul 07 2019 %E A324043 Terms a(24) onward from _Max Alekseyev_, Jul 08 2019