This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324051 #29 Mar 01 2019 04:26:44 %S A324051 0,1,2,5,4,2,6,0,1,18,10,3,16,4,12,67,12,4,18,30,36,260,22,16,8,8,44, %T A324051 5,20,1029,30,28,164,36,28,6,256,96,44,4102,36,7,66,16,104,16391,46, %U A324051 12,13,32,130,8,28,51,70,480,942,65544,42,9,2724,32,66,30,84,262153,124,508,40,10,4,1048586,3320,20,188,50,52,11,78,24 %N A324051 a(n) = A106315(A156552(n)). %C A324051 Positions of zeros, which is sequence A005940(1+A001599(n)) sorted into ascending order: 2, 9, 125, 325, 351, 4199, ..., has A324201 as its subsequence. %H A324051 Antti Karttunen, <a href="/A324051/b324051.txt">Table of n, a(n) for n = 2..4473</a> %H A324051 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A324051 a(n) = A106315(A156552(n)). %F A324051 a(n) = (A156552(n)*A324105(n)) mod A323243(n). %o A324051 (PARI) %o A324051 A106315(n) = (n*numdiv(n) % sigma(n)); %o A324051 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; %o A324051 A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); %o A324051 A324051(n) = A106315(A156552(n)); %Y A324051 Cf. A001599, A005940, A106315, A156552, A158879, A323243, A323244, A324049, A324105, A324201. %Y A324051 Cf. also A324057, A324187. %K A324051 nonn %O A324051 2,3 %A A324051 _Antti Karttunen_, Feb 19 2019