This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324075 #27 Feb 16 2025 08:33:57 %S A324075 1,1,1,2,6,24,120,720,5040,40320,359520,3590400,39362400,472919040, %T A324075 6133670400,85948262400,1284106824000,20434058444800,345796766515200, %U A324075 6188467544064000,117398964114432000,2341018467532800000,49035684501872640000,1074839883779211264000 %N A324075 Number of defective (binary) heaps on n elements having one half of their ancestor-successor pairs (rounded down) distorted. %C A324075 Number of permutations p of [n] having exactly floor(A061168(n)/2) pairs (i,j) in {1,...,n} X {1,...,floor(log_2(i))} such that p(i) > p(floor(i/2^j)). %C A324075 Central terms (also maxima) of rows of A306393. %H A324075 Alois P. Heinz, <a href="/A324075/b324075.txt">Table of n, a(n) for n = 0..100</a> %H A324075 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Heap.html">Heap</a> %H A324075 Wikipedia, <a href="https://en.wikipedia.org/wiki/Binary_heap">Binary heap</a> %H A324075 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a> %F A324075 a(n) = A306393(floor(A061168(n)/2)). %F A324075 a(n) <= (n-1)! for n >= 1 with equality only for n <= 9. %p A324075 h:= proc(n) option remember; `if`(n<1, 0, ilog2(n)+h(n-1)) end: %p A324075 b:= proc(u, o) option remember; local n, g, l; n:= u+o; %p A324075 if n=0 then 1 %p A324075 else g:= 2^ilog2(n); l:= min(g-1, n-g/2); expand( %p A324075 add(x^(n-j)*add(binomial(j-1, i)*binomial(n-j, l-i)* %p A324075 b(i, l-i)*b(j-1-i, n-l-j+i), i=0..min(j-1, l)), j=1..u)+ %p A324075 add(x^(j-1)*add(binomial(j-1, i)*binomial(n-j, l-i)* %p A324075 b(l-i, i)*b(n-l-j+i, j-1-i), i=0..min(j-1, l)), j=1..o)) %p A324075 fi %p A324075 end: %p A324075 a:= n-> coeff(b(n, 0), x, iquo(h(n), 2)): %p A324075 seq(a(n), n=0..25); %t A324075 h[n_] := h[n] = If[n < 1, 0, Length[IntegerDigits[n, 2]] - 1 + h[n - 1]]; %t A324075 b[u_, o_] := b[u, o] = Module[{n, g, l}, n = u + o; If[n == 0, 1, %t A324075 g = 2^(Length[IntegerDigits[n, 2]] - 1); l = Min[g - 1, n - g/2]; %t A324075 Expand[Sum[x^(n - j)*Sum[Binomial[j - 1, i]*Binomial[n - j, l - i]* %t A324075 b[i, l-i]*b[j-1-i, n-l-j+i], {i, 0, Min[j - 1, l]}], {j, 1, u}] + %t A324075 Sum[x^(j - 1)*Sum[Binomial[j - 1, i]*Binomial[n - j, l - i]* %t A324075 b[l-i, i]*b[n-l-j+i, j-1-i], {i, 0, Min[j - 1, l]}], {j, 1, o}]]]]; %t A324075 a[n_] := Coefficient[b[n, 0], x, Quotient[h[n], 2]]; %t A324075 a /@ Range[0, 25] (* _Jean-François Alcover_, Apr 23 2021, after _Alois P. Heinz_ *) %Y A324075 Cf. A000142, A000523, A061168, A306393. %K A324075 nonn %O A324075 0,4 %A A324075 _Alois P. Heinz_, Feb 14 2019