A324084 One of the four successive approximations up to 13^n for 13-adic integer 3^(1/4).This is the 11 (mod 13) case (except for n = 0).
0, 11, 141, 986, 25153, 25153, 2252911, 2252911, 504241047, 3767163931, 67394160169, 1583837570508, 5168158358582, 191552839338430, 2008803478891948, 21695685407388393, 226439257463751421, 1557272475830111103, 96711847589024828366, 96711847589024828366
Offset: 0
Keywords
Examples
The unique number k in [1, 13^2] and congruent to 11 modulo 13 such that k^4 - 3 is divisible by 13^2 is k = 141, so a(2) = 141. The unique number k in [1, 13^3] and congruent to 11 modulo 13 such that k^4 - 3 is divisible by 13^3 is k = 986, so a(3) = 986.
Links
- Wikipedia, p-adic number
Crossrefs
Programs
-
PARI
a(n) = lift(-sqrtn(3+O(13^n), 4) * sqrt(-1+O(13^n)))
Comments