A324086 Digits of one of the four 3-adic integers 3^(1/4) that is congruent to 3 mod 13.
3, 5, 3, 6, 5, 12, 10, 2, 12, 12, 8, 12, 11, 7, 0, 2, 5, 11, 11, 3, 5, 11, 5, 4, 12, 12, 3, 2, 7, 7, 12, 11, 8, 5, 12, 3, 5, 8, 6, 12, 9, 4, 0, 5, 5, 12, 1, 9, 1, 9, 11, 7, 4, 0, 3, 9, 0, 12, 6, 6, 1, 8, 4, 9, 5, 6, 9, 5, 7, 10, 1, 3, 3, 8, 5, 11, 8, 2, 0, 1, 12
Offset: 0
Examples
The unique number k in [1, 13^3] and congruent to 3 modulo 13 such that k^4 - 3 is divisible by 13^3 is k = 575 = (353)_13, so the first three terms are 3, 5 and 3.
Links
- Wikipedia, p-adic number
Crossrefs
Programs
-
PARI
a(n) = lift(sqrtn(3+O(13^(n+1)), 4))\13^n
Comments